
  

 

Abstract. In this study, we use the overnight blood oxygen 

saturation (SpO2) signal along with convolutional neural 

networks (CNN) for the automatic estimation of pediatric sleep 

apnea-hypopnea syndrome (SAHS) severity. The few preceding 

studies have focused on the application of conventional feature 

extraction methods to obtain information from the SpO2 signal, 

which may omit relevant data related to the illness. In contrast, 

deep learning techniques are able to automatically learn features 

from raw input signal. Thus, we propose to assess whether CNN, 

a deep learning algorithm, could automatically estimate the 

apnea-hypopnea index (AHÍ) from nocturnal oximetry to help 

establish pediatric SAHS presence and severity. A database of 

746 SpO2 recordings is involved in the study. CNN was trained 

using 20-min segments from the SpO2 signal in the training set 

(400 subjects). Hyperparameters of the CNN architecture were 

tuned using a validation set (100 subjects). This model was 

applied to a test set (246 subjects), in which the final AHI of each 

patient was obtained as the average of the output of the CNN for 

all the segments of the corresponding SpO2 signal. The AHI 

estimated by the CNN showed a promising diagnostic 

performance, with 74.8%, 90.7%, and 95.1% accuracies for the 

common AHI severity thresholds of 1, 5, and 10 events per hour 

(e/h), respectively. Furthermore, this model reached 28.6, 32.9, 

and 120.0 positive likelihood ratios for the above-mentioned AHI 

thresholds. This suggests that the information extracted from the 

oximetry signal by deep learning techniques may be useful to 

both establish pediatric SAHS and its severity. 

 
Clinical Relevance—This research establishes the usefulness 

of CNN to estimate AHI in pediatric SAHS patients using the 

oximetry signal. 

I. INTRODUCTION 

Pediatric sleep apnea-hypopnea syndrome (SAHS) is a 
respiratory disorder characterized by recurrent episodes of 
partial and/or complete obstruction of the child’s upper airway 
during sleep [1]. Untreated pediatric SAHS may lead to many 
adverse consequences for children’s health and quality of life, 
including impairment of neuropsychological and cognitive 
performance, metabolic dysfunction, cardiac derangements, 
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and systemic inflammation [1].  The prevalence of pediatric 
SAHS is estimated in the range 1% to 5% of children [1]. 
However, despite its major negative consequences, pediatric 
SAHS is considered an underdiagnosed condition [1], [2].  

SAHS is diagnosed by means of the overnight 
polysomnography (PSG) test, which acts as "gold standard". 
This test requires an overnight stay of children in a specialized 
sleep unit, where multiple physiological signals are recorded. 
These recordings need an offline inspection to score complete 
breathing cessation events (apneas) and significant airflow 
reductions (hypopneas) to compute the apnea-hypopnea index 
(AHI), which is used to reach a diagnosis [3].  However, PSG 
is technically complex, relative unavailable, and highly 
intrusive, thus delaying the access for both the diagnosis and 
treatment [4].  

These drawbacks, together with the high prevalence of the 
disease, have led the scientific community to explore the use 
of simplified screening tests. In this sense, overnight oximetry 
has been previously used [5]–[10]. Overnight oximetry 
records the blood oxygen saturation (SpO2) signal with the 
only use of a pulse oximeter placed on a finger, thus being a 
simple, suitable, and reliable technique for children [4], [8]. 
SpO2 signal is useful to detect apneic events, since decreases 
in blood oxygen levels, so-called oxygen desaturations, are 
associated to these events [3]. In this regard, the automated 
analysis of the SpO2 signal has shown it usefulness as a 
simplified tool in the screening of pediatric SAHS [5]–[10]. 

Signal-processing algorithms employed in previous 
studies included statistical analysis, conventional clinical 
indices, nonlinear analysis, and frequency domain techniques, 
which were used to extract features from the SpO2 signal [5]–
[10]. Similarly, feature selection methods were used to obtain 
subsets of relevant features, whereas machine-learning 
algorithms were used to provide an automatic diagnosis of 
pediatric SAHS. However, these machine-learning based 
approaches require to determine which information extract 
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from the physiological signals, leading to the omission of 
useful information from these signals that may help to detect 
apneic events [11]. 

In recent years, deep learning has emerged as a new 
methodology to automatically learn features and find patterns 
in raw physiological data [11]. Previous studies have 
suggested the ability of deep-learning algorithms to analyze 
physiological signals from PSG in adult SAHS patients [12]–
[15]. In the context of pediatric SAHS, only one single 
preliminary study developed by our group applied 
convolutional neural networks (CNN) to the oximetry signal 
to detect apneic events [16]. However, this study neither 
estimated AHI nor SAHS severity, which is needed to reach a 
diagnosis [16]. Therefore, additional research is needed to 
assess the usefulness of CNNs in the diagnosis of pediatric 
SAHS.  

We hypothesized that CNNs could help to automatically 
learn all the relevant information from SpO2 signal associated 
with pediatric SAHS. Thus, our objective is to assess the 
usefulness of CNNs to estimate the AHI and hence the severity 
of SAHS using the oximetry signal. 

II. MATERIAL AND METHODS 

A. Subjects and signals 

The nonrandomized dataset from the public multicenter 
Childhood Adenotonsillectomy Trial (CHAT) database was 
used in this study [17], [18]. The full protocol of CHAT 
database is provided in the supplementary material of [17]. 
This dataset is composed of PSG studies of 779 children 
ranging from 5-10 years of age. Apneas and hypopneas were 
scored using the 2007 American Academy of Sleep Medicine 
guidelines [3]. The AHI provided in the database was 
computed as the number of obstructive apneas, mixed apneas, 
and hypopneas (associated with 3% desaturation or arousal). 
In this study, the common AHI cutoffs of 1, 5, and 10 events 
per hour (e/h) were used to classify pediatric subjects into four 
SAHS severity degrees: no-SAHS (AHI<1), mild SAHS 
(1≤AHI<5 e/h), moderate SAHS (5≤AHI<10 e/h), and 
severe SAHS (AHI≥10 e/h) [5], [10]. 

SpO2 signals from PSG were obtained at different sample 
frequencies: 1, 2, 10, 12, 16, 200, 256, and 512 Hz. A 
preprocessing stage was included to downsample the SpO2 
signals to a common sample rate of 1 Hz.  Artifacts in the 
SpO2 signal were also removed, following the methodology 
employed in previous studies [5], [10]. Finally, those subjects 
with a preprocessed SpO2 recording longer than 3h were 
included in the study, since such duration ensures that there 
are enough sleep cycles [3]. A dataset of 746 preprocessed 
SpO2 signals was finally obtained.  

 This dataset was divided into three sets: a training set 
(first 400 subjects, 54%), employed to train the CNNs, a 
validation set (100 following subjects, 13%), used to obtain 
the CNN model with the optimum values for the 
hyperparameters, and a test set (last 246 subjects, 33%), 
employed to assess the diagnostic ability of our proposal. 
SpO2 signals were divided into 20-min segments and the AHI 
was estimated for each segment [15]. In the training and 
validation sets, SpO2 signal segmentation was done with 95% 
overlap in order to increase the number of available segments. 

Thus, the training set had 197891 segments, the validation set 
had 49495 segments, and the test set had 6257 segments. 
Table I shows clinical and demographic data from the subjects 
under study.  

B. Proposed CNN architecture 

CNNs are inspired to process multidimensional arrays, 
such as 1D signals or 2D images, due to its multi-layer 
architecture with shared weights, local connections, and 
pooling operations [11]. Fig 1 shows the overall CNN-based 
architecture employed in this study. This architecture has three 
main sections: input, CNN, and output sections. 

The input section of the network consists of the 20-min 
segments (1200 samples) of the SpO2 preprocessed signals.  

The CNN section is composed of λ CNN sub-blocks, each 
one composed of convolutional layer, batch normalization, 
rectified linear unit (ReLU) layer, pooling, and dropout: 

 Convolutional layers. In these layers, feature maps are 
extracted from the data using convolution filters (kernels) 
[11]. In this study, each convolutional layer had 16 filters 
with a kernel size of 6 and a stride of 1, which are common 
values in these layers. 

 Batch normalization (BN). BN is applied between the 
convolution and the nonlinearity (ReLU) in order to 
normalize the feature maps [11].  

 ReLU layer. In this layer, a ReLU activation function is 
applied to perform a thresholding operation, deciding 
which feature maps are activated [11]. 

 Pooling layer. This layer is applied after ReLU layer to 
reduce the dimensionality, while retaining the significant 
information [11]. A max-pooling layer with a factor of 2, 
the most widely used in CNNs, was used in this study. 

 Dropout layer. This is the last layer of each CNN block. 
Dropout is a regularization technique that randomly 
removes connections with a probability p in order to 
prevent overfitting [11]. 

Finally, the output section follows the last sub-block of the 
CNN section. A flattening layer is first applied to transform 
the feature maps into a 1-D column. Then, the last layer of the 
network is a linear activation function, which is used to obtain 
the estimated AHI of the 20-min SpO2 input segment. 

TABLE I.  DEMOGRAPHIC AND CLINICAL DATA OF THE SUBJECTS 

UNDER STUDY 

 All 
Training 

group 

Validation 

group 
Test group 

Subjects (n) 746 400 100 246 

Age (years) 7 [2] 7 [2] 7 [3] 7 [2] 

Males (n) 345 (46.3%) 177 (44.3%) 46 (46.0%) 113 (45.9%) 

BMI 

(kg/m2) 
17.3 [5.2] 17.4 [5.5] 16.9 [4.4] 17.0 [4.8] 

AHI (e/h) 0.8 [1.2] 0.8 [1.1] 0.9 [2.0] 0.9 [1.5] 

AHI ≥ 1 

(e/h) 
303 (40.6%) 165 (41.3%) 41 (41.0%) 97 (39.4%) 

AHI ≥ 5 

(e/h) 
100 (13.4%) 46 (11.5%) 17 (17.0%) 37 (15.0%) 

AHI ≥ 10 

(e/h) 
66 (8.9%) 30 (7.5%) 11 (11.0%) 25 (10.2%) 

Data are presented as median [interquartile range], n or %. BMI: Body Mass Index; AHI: Apnea-

Hypopnea Index; e/h: events per hour 

 

 



  

The CNN architecture was implemented using Keras 
framework with TensorFlow backend. CNNs were trained on 
a NVIDIA GeForce RTX 2080 GPU. The estimated AHI for 
each patient was obtained as the average of the output values 
of the CNN obtained for each 20-min segment of the 
corresponding SpO2 signal.  

C. Statistical analysis 

The diagnostic performance of the estimated AHI was 
assessed by means of sensitivity (Se, percentage of SAHS 
positive patients rightly classified), specificity (Sp, percentage 
of SAHS negative children rightly classified), positive 
predictive value (PPV, proportion of positive test results that 
are true positives), negative predictive value (NPV, proportion 
of negative test results that are true negatives), positive 
likelihood ratio (LR+, Se/(1-Sp)), negative likelihood ratio 
(LR-, (1-Se)/Sp), accuracy (Acc, percentage of subjects 
correctly classified), and Cohen’s kappa index (kappa). 

III.  RESULTS 

A.  CNN model optimization and training  

The hyperparameters of the CNN architecture were the 
number of CNN sub-blocks (λ) and the dropout probability (p). 
Several experiments were conducted to find the optimum 
values of these hyperparameters. λ and p were varied from λ = 
2 up to λ = 6 and p = 0 up to p = 0.5. For each λ-p pair, the 
corresponding CNN model was trained using the training set 

and kappa was computed in the validation set. He-normal 
initializer was used for weights initialization, mean absolute 
error was computed as the loss function, and the Adam 
algorithm with an initial learning rate of 0.001 was used for 
training the CNN models, with a decrease of the learning rate 
by a factor of 0.5 after 10 epochs and early stopping after 30 
epochs of no improvement. Finally, λ = 5 and p = 0.3 were 
obtained as the optimum values, since this pair reached the 
highest kappa.  

B. CNN model performance 

Table II shows the confusion matrix of the CNN model in 
the test set. This model rightly classified 67.15% (165/246) of 
the subjects in the test set, with a kappa value of 0.31. Table 
III shows the diagnostic ability of the CNN model for the AHI 
cutoffs of 1 e/h, 5 e/h, and 10 e/h. These results are derived 
from the confusion matrix. Notice that the proposed CNN 
model reached high accuracies (higher than 90%) for the AHI 
cutoffs of 5 and 10 e/h, as well as high PPV (higher than 85%) 
and LR+ (higher than 25) for the three cutoffs.  

IV. DISCUSSION 

In this preliminary study, we evaluated the usefulness of 
analyzing the SpO2 signal by means of CNN to simplify the 
diagnosis of pediatric SAHS. To our knowledge, this is the 
first study applying deep learning techniques to establish 
pediatric SAHS and its severity.  

Our proposal reached high diagnostic ability, with 74.8%, 
90.7%, and 95.1% Acc for the AHI cutoffs of 1, 5, and 10 e/h. 
These AHI cutoffs are commonly employed to  determine the 
presence of SAHS (AHI≥1 e/h), recommend surgical 
treatment (AHI≥5 e/h), and identify the children with a higher 
risk of suffering comorbidities and negative health 
consequences (AHI≥10 e/h) [19]. In this regard, and according 
to the Table II, 97.1% (198/204) of subjects predicted as no-
SAHS (AHI<1 e/h) by the CNN model have an AHI<5 e/h. 
Furthermore, only 1 subject predicted as moderate-to-severe 
SAHS (AHI≥5 e/h) is no-SAHS (AHI<1 e/h). Finally, 92.9% 
(13/14) of subjects predicted as severe SAHS (AHI≥10 e/h) 
are severe SAHS.  Our proposal also obtained high LR+: 28.6, 
32.9, and 120 for 1, 5, and 10 e/h, respectively. A high LR+ is 
of the utmost importance for screening tests, since a LR+ 
above 10 is considered to provide strong evidence to confirm 
the disease [20]. According to these high LR+, our proposed 

 
Figure 1.  CNN-based architecture: (a) input block, it contains the 20-

min SpO2 segments (b) CNN block with: convolutional layer,  batch 

normalization, ReLU layer, pooling layer, and dropout, and (c) output 

block, with the flattening layer, linear unit, and the estimated AHI of the 

segment at the output of the network.  

 

 

 

 

 

 

 

 

 

 

 TABLE II.  CONFUSION MATRIX FOR THE CNN MODEL IN THE TEST 

SET  

Estimated 

 AHI<1 1≤AHI<5 5≤AHI<10 AHI≥10 

A
ct

u
a

l 

AHI<1 144 1 1 0 

1≤AHI<5 54 7 1 1 

5≤AHI<10 6 6 1 0 

AHI≥10 0 8 3 13 

 

 
TABLE III.  DIAGNOSTIC ABILITY OF THE CNN MODEL IN THE TEST 

SET FOR AHI CUTOFFS= 1 E/H, 5 E/H, AND 10 E/H 

 
Se 

(%) 
Sp 
(%) 

Acc 
(%) 

PPV 

(%) 
NPV 
(%) 

LR+ LR- 

AHI=1 e/h 40.0 98.6 74.8 95.2 70.6 28.6 0.61 

AHI=5 e/h 46.0 98.6 90.7 85.0 91.2 32.9 0.55 

AHI=10 e/h 54.2 99.6 95.1 92.9 95.3 120 0.46 

 

 



  

CNN model would be especially useful to confirm the 
presence of positive subjects for the diagnosis of SAHS 
(AHI≥1), moderate-to-severe SAHS (AHI≥5), and severe 
SAHS (AHI≥10). On the other hand, there is a trend of the 
CNN to underestimate the AHI of the subjects with an AHI≥1 
e/h, which results in a low sensitivity for the AHI thresholds 
of 1, 5, and 10 e/h. 

Previous studies applied deep-learning techniques to 
analyze physiological signals in the context of adult SAHS 
diagnosis [12]–[15]. These studies reached accuracies in the 
range 85-96% for the detection of adult SAHS and its severity. 
From these studies, it is of note the work done by Nikkonen et 
al. [15], who applied a deep neural network to estimate AHI 
using 10-min SpO2 data, reaching 90% accuracy to classify 
into the four adult SAHS severity degrees (AHI<5, 
5≤AHI<15, 15≤AHI<30, and AHI≥30 e/h). Nonetheless, they 
used home polygraphy instead of PSG for the diagnosis of 
SAHS [15], which does not provide the total sleep time and 
does not quantify the hypopneas associated to arousals in the 
computation of AHI [3].  In contrast to these studies, our study 
applied CNN to estimate pediatric SAHS severity.  

In the recent years, researchers have focused on the use of 
the oximetry signal for the screening of pediatric SAHS [5]–
[10], [16]. Most of these studies have analyzed the oximetry 
signal by means of conventional signal processing and 
machine-learning techniques [5]–[10]. These works achieved 
varying diagnostic accuracies in the range 75-85% using the 
AHI cutoff of 1 e/h [5]–[7], [10], 81-85% for an AHI cutoff of 
5 e/h [5]–[10], and 85-91% using the AHI cutoff of 10 e/h [5], 
[7], [9], [10]. Only one single preliminary study developed by 
our group applied deep-learning techniques to the oximetry 
signal to detect apneic events in pediatric SAHS patients [16], 
achieving 93.6% Acc (56.5% Se and 97.5% Sp) using 60-s 
SpO2 segments [16]. Nonetheless, AHI estimation was not 
performed in [16], which is needed to establish SAHS 
diagnosis and severity. Our current results achieved a higher 
diagnostic performance for moderate-to-severe (AHI≥5 e/h) 
and severe SAHS (AHI≥10 e/h) groups with the use of a CNN, 
which automatically learns features from the SpO2 recordings.  

In spite of the promising results of our approach, some 
limitations should be considered. First, the number of subjects 
in no-SAHS group is high when compared to the other severity 
groups, especially the moderate and severe groups. This issue 
slightly contributes to the trend of the CNN to underestimate 
the AHI. In addition, further evaluation would be required to 
fairly compare our results with conventional signal processing 
approaches using the same dataset. Finally, future research 
efforts may be focused on assessing the effects of using other 
deep learning algorithms, as well as varying different 
hyperparameters, such as the activation function, the kernel 
size, or the loss function, in order to reduce the AHI 
underestimation of our proposal.  

In summary, a CNN model fed with raw oximetry data 
achieved a promising diagnostic performance, outperforming 
state-of-the-art studies for AHI cutoffs of 5 and 10 e/h. This 
model also achieved strong evidence to confirm the presence 
of pediatric SAHS in its different severity degrees. This 
suggests that deep learning approaches could be potentially 
used to analyze the oximetry signal in the context of pediatric 
SAHS.  
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