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Abstract. One major risk of paediatric sleep apnoea-hypopnoea syndrome
(SAHS) is the development of cognitive impairments among affected children.
Electroencephalography (EEG) is ordinarily used as part of polysomnography,
the standard diagnostic test for SAHS. However, how SAHS changes overnight
EEG, and its relationships with cognitive performance, remains unclear. In this
study, we first analyzed the spectral content of EEG recordings from 294
children to explore possible differences caused by SAHS. Then, a correlation
network analysis was conducted to evaluate relationships among different EEG
spectral bands and the results from the Differential Ability Scales (DAS) battery
of cognitive tests. Our analyses identified up to six new SAHS spectral bands of
interest in the EEG. They also showed higher absolute correlations among the
different spectral bands as SAHS severity increased. Higher SAHS severity
degree also indicated higher absolute correlations with DAS tests. Our results
suggest that the spectral content of the overnight EEG is useful to characterize
both paediatric SAHS and the cognitive performance of the affected children.
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1 Introduction

The sleep apnoea-hypopnoea syndrome (SAHS) is a highly prevalent disease affecting
up to 5% of children [1]. Recurrent upper airway collapse and airflow reductions during
the night lead to inadequate gas exchange, hypoxia episodes and fragmented sleep [2].
These undesirable effects may cause negative symptoms among which cognitive and
behavioral deficits are regarded as very common and deleterious [2].

Several previous studies focused on establishing relationships between paediatric
SAHS and the cognitive performance of affected children. These studies provided
evidence of higher prevalence of SAHS among poorly performing students [3],
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associations between SAHS symptoms and lower cognitive functioning [4], as well as
relationships between SAHS presence/severity and lower scoring in neurocognitive
tests [2, 5]. Additionally, recent studies have focused on specific electroencephalo-
graphic (EEG) events, reaching different conclusions about associations between slow
waves and spindle patterns with SAHS and cognition [6, 7]. Although EEG is ordi-
narily used to evaluate sleep architecture, its overnight analysis in healthy and SAHS-
affected children has been scarcely investigated. Hence, in this preliminary study, we
propose the analysis of the entire overnight EEG.

Spectral analysis has shown its usefulness in different contexts to automatically
process biomedical signals, such as EEG [8] and magnetoencephalography (MEG) [9],
includingovernight recordings associatedwithSAHS [10–12]. The recurrent nature of the
apneic events, which also induce abnormal recurrent episodes in the EEG, such as res-
piratory arousals [13], also supports the suitability of this frequency-domain methodol-
ogy. Accordingly, we hypothesized that the spectral information of the overnight EEG
provides useful information about paediatric SAHS and its cognitive implications.

In order to evaluate this assumption, we calculated the relative power (RP) from the
conventional EEG frequency bands, as well as from new SAHS-related bands of
interest (BOI) identified during the current study. RPs were extracted from each of the
typical channels recorded in sleep studies. They were subsequently included in cor-
relation networks, representing different SAHS-severity degrees, along with the Gen-
eral Conceptual Ability (GCA) score. This cognitive indicator is derived from the
battery of tests included in the Differential Ability Scales (DAS), and is commensurate
with the intelligent quotient (IQ) [2]. Our main objective was to show the evolution of
the EEG spectral content as paediatric SAHS worsens, as well as its relationship with
the general cognitive ability of children.

2 Materials

Two hundred and ninety four community non-referral children (5–9 years) underwent
an overnight polysomnography (PSG) that included 8-channel EEG (F3, F4, T3, T4,
C3, C4, O1, and O2, from the international 10–20 system). Apnoea-hypopnoea index
(AHI) was derived from PSG by clinicians according to the rules of the American
Academy of Sleep Medicine (AASM) [13]. AHI was used to establish both the pres-
ence and severity of SAHS: no-SAHS, AHI < 1 event/hour (176 subjects); mild-SAHS,
1 � AHI < 5 e/h (98 subjects); moderate-to-severe-SAHS AHI � 5 e/h (20 subjects).
Table 1 shows clinical and demographic data of the subjects under study. No statis-
tically significant differences (Kruskal-Wallis p-value > 0.05) were found among
groups in body mass index (BMI) or age.

EEG was recorded at sampling rates of 250 Hz and 500 Hz that were subsequently
homogenized to 200 Hz, as recommended by the AASM [14]. A four-step pre-
processing stage was also conducted prior to the analysis of the EEG: (i) re-referencing
to the average of all EEG channels; (ii) stop-band filter to 60 Hz and band-pass filter
(Hamming window) from 0.1 to 70 Hz; (iii) automatic artifact rejection on the basis of
epoch-adaptive thresholding; and (iv) rejection of first and last parts of the EEG to
avoid initial and final awake periods.
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DAS tests were administered in the morning immediately after the PSG night [2]. It
was composed of a battery of neurocognitive tests that measured the ability among a
wide range of intellectual activities [2]. Scores derived from each test were computed in
accordance with the age of each child and merged into a single standard score that
estimates the global intellectual development (GCA score) [2].

3 Methods

3.1 Spectral Analysis

The power spectral density (PSD) of all EEG channels from all subjects were estimated
following the Blackman-Tukey method. Thus, a rectangular non-overlapping 6000-
sample window was used to split each EEG channel. The PSDs of the epochs were
averaged to estimate a single PSD for each channel of each subject. Then, each
averaged PSD was normalized by the total power of the corresponding channel.

The RPs of the conventional EEG frequency bands (Delta1: 0.1–2 Hz, Delta2: 2–
4 Hz; Theta: 4–8 Hz, Alpha: 8–13 Hz; Beta1: 13–19 Hz, Beta2: 19–30 Hz; Gamma:
30–70 Hz) were obtained from all channels of each subject. RP was computed as the
sum of the amplitude values of the normalized PSDs within each frequency band. RPs
from six SAHS frequency bands of interests found during the current study were also
obtained (Fig. 1). They were found by comparing the grand averaged PSDs amplitude
values at each frequency of the different SAHS severity groups using p-values from
analysis of covariance (ANCOVA) [15].

3.2 Correlation Network Analysis

Weighted correlation network is based on pairwise correlations between variables [16].
In this study, a multi frequency network approach was used in which the RP for each
frequency band and channel considered was depicted with a single node in the network.
The weighted link between each pair of nodes represents the association between such
pair of variables (in terms of monotonic relationship). GCA DAS score was also
included as a different node (variable) with the ultimate goal of assessing the interaction
between cognitive performance and RPs from EEG.

Table 1. Demographic and clinical data in each SAHS severity group (mean ± Sd)

no-SAHS mild-SAHS moderate-to-severe-SAHS

# subjects 176 98 20
Age (years) 6.60 ± 0.75 6.56 ± 0.75 6.6 ± 0.82
Sex (M/F) 104/72 55/43 10/10
BMI (kg/m2) 17.10 ± 2.97 18.46 ± 4.82 19.48 ± 5.27
AHI (e/h) 0.39 ± 0.28 1.81 ± 0.83 13.61 ± 10.92

*BMI: body mass index; AHI: apnoea-hypopnoea index; M/F: male/
female
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In order to remove possible bias due to the unbalanced number of subjects in each
group, the following split was conducted: (i) 8 subgroups of 22 subjects from the no-
SAHS group, (ii) 4 subgroups of 20 subjects and an additional subgroup of 18 subjects
from the mild-SAHS group, and (iii) a single group of 20 subjects from the severe-
SAHS group. All correlation matrices from a same SAHS-severity group were aver-
aged. Thus, a single matrix was obtained per SAHS-severity group. A non-paranormal
transformation was performed for this purpose [17]. Correlation networks were con-
structed by means of the R package qgraph [18]. Particularly, we used the iterative
algorithm described by Fruchterman and Reingold [19], which forces embedded net-
work layouts after 500 iterations.

The whole correlation network analysis was conducted in two cases: (i) using the
conventional EEG frequency bands and (ii) the BOIs derived from the statistical
analysis of the comparison between groups. Therefore, six networks were obtained (2
cases � 3 SAHS-severity groups).

3.3 Statistical Analysis

ANCOVA was used to evaluate statistically significant differences when establishing
the spectral BOIs (p-value < 0.05). These were corrected for multiple comparisons
using the false discovery rate (FDR) methodology. They were also adjusted for age and
sex. Spearman’s partial-correlation coefficient was used in the correlation networks to
assess possible relationships among the RPs of the frequency bands of each channel.

4 Results

4.1 Definition of the SAHS Frequency Bands of Interest

Figure 1 shows the normalized grand average of the PSD (PSDn) from all channels
split into the three SAHS severity groups. It also displays the significant p-values
(<0.05) reached in the comparison of the PSDn amplitude values from these groups at
each frequency. Six BOIs in total were found. The spectral content was mainly con-
centrated below 5 Hz, where more visual differences arose and up to four BOIs were
defined (BOI 1: 0.15–0.38 Hz; BOI 2: 1.17–1.50 Hz; BOI 3: 1.87–2.90 Hz; BOI 4:
3.72–4.63 Hz). All of them were within Delta 1, Delta 2, and Theta bands. However,
another two BOIs were present above 39 Hz, within the conventional Gamma band
(BOI 5: 39.21–58.26 Hz; BOI 6: 61.73–70.0 Hz) with the gap between them coin-
ciding with the values obtained after the 60 Hz stop-band filter.

4.2 Correlation Networks

Figures 2(A)–(F) show correlation networks for the three SAHS severity groups, where
the nodes are the RPs of each band and each channel taken as variables. There is
another node for the DAS GCA score. Different colors represent each frequency band
and DAS. Figures 2(A)–(C) show the conventional EEG frequency bands for each of
the SAHS groups, whereas Figs. 2(D)–(F) show the corresponding correlation
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networks for the BOIs. The wider the lines that connect each node, the higher the
absolute Spearman’s correlation coefficient. Red and green colors address the sign of
the coefficient (negative and positive, respectively). Absolute correlation values below
0.05 are considered residual and are not represented.

Correlation networks of the conventional EEG frequency bands show an ordered
network for the controls in Fig. 2(A), where the stronger correlations form clusters of
channels representing information from the same frequency band.

Clusters gradually disappear as SAHS severity increases in Figs. 2(B) and (C),
suggesting higher degree of relationship among the information of the entire EEG
spectrum in SAHS presence. Interestingly, the correlation between GCA DAS score
and the EEG spectral information also increases with SAHS severity.

Similar tendencies can be observed in the networks formed with the RPs from the
BOIs, with the information among the different bands being increasingly correlated as
SAHS worsens. Absolute correlations between the GCA DAS score and the RPs from
the EEG BOIs also increase with SAHS severity. In addition, the positively correlated
clusters formed with BOI 5 and BOI 6 in Figs. 2(D) and (E) may indicate a continuous
BOI only disturbed by the 60 Hz stop-band filter.

Fig. 1. Normalized grand-average PSD (zoomed in 0–4 Hz) of the three SAHS severity groups
and corresponding p-values at each frequency. Bands of interests (BOI) 1 to 6 (p-values < 0.05
Kruskall-Wallis test) are also shown.
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5 Discussion and Conclusions

In this preliminary study, we have shown differences in the spectral content of the
overnight EEG from three different SAHS severity groups: controls (no-SAHS), mild-
SAHS, and moderate-to-severe SAHS. We have also presented new spectral BOIs with
the potentiality of being more SAHS-specific than the conventional EEG frequency
bands. RPs extracted from both these bands and the six BOIs showed lower clustering
behavior in the correlation networks as SAHS worsens, indicating that SAHS may be
affecting the EEG spectrum in a wide range. This would be consistent with recent
studies that reported a continuous impact on the brain due to abnormal breathing during
sleep [20]. In both cases, the DAS GCA score increased the absolute value of corre-
lation with the RPs as SAHS severity increased, showing that the cognitive effects in
children induced by SAHS could be reflected in the overnight EEG.

BOI 1 (0.15–0.38 Hz) mainly falls within a frequency range in which arousals have
particular influence (0.025–0.3 Hz) [21]. As Fig. 1 shows, PSDn amplitudes of SAHS
groups are higher than those from no-SAHS are in that region. In addition, it is well-
known that arousals often follow apneic events [14]. These circumstances support the
specific relationship of this band with SAHS. Moreover, BOI 2 (1.17–1.50 Hz), BOI 3
(1.87–2.90 Hz) and BOI 4 (3.72–4.63 Hz) are mostly included within Delta band,
whose relationship with non-rapid eye movement (NREM) deeper stage sleep is
commonly accepted [22]. Decreasing PSDn values are shown in mild-SAHS and

Fig. 2. Correlation networks in the three SAHS severity groups (no-SAHS, mild-SAHS, and
moderate-to-severe-SAHS) for the conventional EEG frequency bands (A)–(C) and the new six
BOIs found (D)–(F). DAS GCA score is also included in the analysis as a red node.
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moderate-to-severe-SAHS groups in these bands, suggesting less deep NREM sleep
activity as SAHS worsens. This agrees with the typical sleep fragmentation present in
SAHS-affected children [2]. Finally, BOI 5 and BOI 6 are fully included within
Gamma. This band is associated with active cognitive processing regardless from
whether it is generated after external stimuli or internal sources [23]. It has been
hypothesized that an association exists between Gamma and conscious states [25].
Thus, changes among SAHS groups might be indicating different consciousness
degree, which may be due to alterations in the arousal pattern. However, assessment of
these hypotheses requires further study.

The cognitive impairment suffered by SAHS-affected children has been well-
established [2–5]. However, little research is available regarding possible characteris-
tics in the EEG as reflecting diminished cognitive performance. Weichard et al. [6],
reported Delta power at the beginning of the night as the key factor underlying specific
cognitive and behavioral problems in a cohort of 42 children, a finding which is
consistent with the results of the current study (BOIs 2 to 4). On the other hand,
Brockman et al. [7], analyzed spindle patterns in both control and SAHS children (33
subjects in total). They found significant correlations between N2-REM stage spindle
density from the SAHS group and several neurocognitive tests. These results are also
consistent with ours since spindle recurrence and duration are reflected in the band
0.025–0.3 Hz [23], in which BOI 1 is included. These studies, however, focused on
single EEG events or frequency bands (Delta activity and spindles), whereas our work
used a large database to analyze the overnight EEG in an unbiased fashion. This
approach allowed us to identify increased absolute correlations of the GCA DAS
cognitive score in the entire nocturnal EEG information as SAHS worsens.

Despite the promising results identified in this study, several limitations deserve
mention. The proportion of moderate-to-severe subjects should be increased. Although
our database is larger than any other used in other state-of-the-art studies, such
expansion of the database would be useful for the sake of the generalization of our
results. Additionally, subjects from a SAHS clinical referral population would be
helpful to validate and enrich our conclusions, as our subjects were selected from the
general community. This issue is being currently addressing for future studies. Another
future goal is the analysis of our results in accordance with each sleep stage.

To summarize, we have shown that changes in the overnight EEG spectrum arise in
the presence of paediatric SAHS. These changes alter both low (BOIs 1 to 4) and high
(BOIs 5 and 6) frequencies. The information from the EEG spectrum shows more
relationships among all its spectral bands as SAHS worsens. In addition, the spectral
information from the EEG has also enhanced relationships with cognitive performance
as SAHS severity increases. These results suggest that the spectral information from the
overnight EEG, along with its correlation network analysis, can be useful to charac-
terize both paediatric SAHS and identify those children whose cognitive performance
is affected by this condition.
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