
Pediatric Pulmonology. 2021;1–13. wileyonlinelibrary.com/journal/ppul © 2021 Wiley Periodicals LLC | 1

Received: 12 February 2021 | Revised: 7 April 2021 | Accepted: 10 April 2021

DOI: 10.1002/ppul.25423

OR I G I NA L A R T I C L E

Reliability of machine learning to diagnose pediatric
obstructive sleep apnea: Systematic review
and meta‐analysis

Gonzalo C. Gutiérrez‐Tobal PhD1,2 | Daniel Álvarez PhD1,2,3 |

Leila Kheirandish‐Gozal MD, MSc4 | Félix del Campo MD, PhD1,2,3 |

David Gozal MD, MBA, PhD (Hon)4 | Roberto Hornero PhD1,2,3

1Biomedical Engineering Group, Universidad

de Valladolid, Valladolid, Spain

2Centro de Investigación Biomédica en Red en

Bioingeniería, Biomateriales y Nanomedicina,

(CIBER‐BBN), Zaragoza, Spain

3Department of Pneumology, Río Hortega

University Hospital, Valladolid, Spain

4Department of Child Health, Child Health

Research Institute, The University of Missouri

School of Medicine, Columbia, Missouri, USA

Correspondence

Gonzalo C. Gutiérrez‐Tobal, PhD, Escuela

Técnica Superior de Ingenieros de

Telecomunicación, Universidad de Valladolid,

Campus Miguel Delibes, Paseo Belén 15,

47011 Valladolid, España.

Email: gonzalo.gutierrez@gib.uva.es

Funding information

Sociedad Española de Neumología y Cirugía

Torácica, Grant/Award Number: 649/2018;

Centro de Investigación Biomédica en Red en

Bioingeniería, Biomateriales y Nanomedicina;

Ministerio de Ciencia, Innovación y

Universidades, Grant/Award Numbers: D.

Álvarez is supported by a "Ramón y Cajal" gra,

DPI2017‐84280‐R, RTC‐2017‐6516‐1;
Sociedad Española de Sueño,

Grant/Award Number: Beca de Investigación

SES 2019; University of Missouri,

Grant/Award Number: Tier 2; Children's

Miracle Network Endowed Professorship;

Leda J. Sears Foundation; European Regional

Development Fund, Grant/Award Numbers:

Cooperation Programme Interreg V‐A Spain‐
Portugal, DPI2017‐84280‐R, RTC‐2017‐
6516‐1; National Institutes of Health,

Grant/Award Numbers: AG061824,

HL130984, HL140548

Abstract

Background: Machine‐learning approaches have enabled promising results in ef-

forts to simplify the diagnosis of pediatric obstructive sleep apnea (OSA). A com-

prehensive review and analysis of such studies increase the confidence level of

practitioners and healthcare providers in the implementation of these methodolo-

gies in clinical practice.

Objective: To assess the reliability of machine‐learning‐based methods to detect

pediatric OSA.

Data Sources: Two researchers conducted an electronic search on the Web of

Science and Scopus using term, and studies were reviewed along with their bib-

liographic references.

Eligibility Criteria: Articles or reviews (Year 2000 onwards) that applied machine

learning to detect pediatric OSA; reported data included information enabling de-

rivation of true positive, false negative, true negative, and false positive cases;

polysomnography served as diagnostic standard.

Appraisal and Synthesis Methods: Pooled sensitivities and specificities were com-

puted for three apnea‐hypopnea index (AHI) thresholds: 1 event/hour (e/h), 5 e/h,

and 10 e/h. Random‐effect models were assumed. Summary receiver‐operating
characteristics (SROC) analyses were also conducted. Heterogeneity (I2) was eval-

uated, and publication bias was corrected (trim and fill).

Results: Nineteen studies were finally retained, involving 4767 different pediatric

sleep studies. Machine learning improved diagnostic performance as OSA severity

criteria increased reaching optimal values for AHI = 10 e/h (0.652 sensitivity; 0.931

specificity; and 0.940 area under the SROC curve). Publication bias correction had

minor effect on summary statistics, but high heterogeneity was observed among the

studies.
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1 | INTRODUCTION

Pediatric obstructive sleep apnea (OSA) has been the focus of increasing

scientific interest during the last several decades. Since it was initially

described by Guilleminault et al.,1 the cumulative evidence regarding

OSA high prevalence,2 suboptimal diagnostic rates,3 and potential long‐
term cardiovascular, neurocognitive, and behavioral associated

morbidities,2 have driven substantial research efforts in two major di-

rections, namely finding effective treatments4 and enabling simplified

objective and less costly diagnostic methods.3 In this respect, whereas

both surgical and nonsurgical interventions have successfully been de-

veloped and validated,4,5 the gold standard for reaching the diagnosis of

OSA in children remains overnight polysomnography (PSG), and due to

its complexity, costs and access delay problems, it has become obvious

that PSG is far from being the ideal diagnostic solution for habitually

snoring children at risk for OSA.6

Several approaches have been proposed to overcome such PSG

limitations and simplify the diagnostic methodology. For example, sleep‐
related questionaries,7,8 symptoms‐based scores,9 and automated single‐
channel recordings10–12 have been frequently assessed but have not

yielded the accuracy thresholds that would be acceptable for widespread

adoption.13 In contrast, machine‐learning techniques have elicited in-

creasingly growing interest due to their prominent impact in a wide range

of healthcare processes.14 Indeed, promising results have also been re-

ported in studies involving machine‐learning approaches that facilitate

automated OSA diagnosis using pediatric recordings.15–33 However, a

substantial level of skepticism remains among the sleep specialists and

clinical practitioners alike, regarding the clinical use of these automatic

tools.34

There is little doubt that availability of a reliable, automated, and

simplified alternative to PSG would improve OSA diagnosis in children

from several different perspectives. On the one hand, less need for

equipment requirements, particularly those related to the number of

sensors, would improve patient comfort. It would also open the door to

home testing,6 and consequently, reduce the long waiting lists currently

in place around the world for a child to undergo a PSG. On the other

hand, an automated methodology would decrease the time and effort by

sleep specialists spent on the visual inspection of PSG‐derived overnight

physiological signals,6 thus accelerating the diagnostic process. Taken

together, these advantages would facilitate earlier diagnosis and access

to treatment for the affected children.

Based on the aforementioned considerations, we conducted a sys-

tematic review and meta‐analysis to shed light on the reliability of

machine‐learning studies focused on the diagnosis of pediatric OSA.

Accordingly, we have summarized the main methodological steps un-

dertaken to systematically select the extant set of published studies and

compare them with current standards and performance expectations in

the field. To this effect, we assessed the type of machine‐learning
methods used, the validation strategy followed, and the explainability of

the models obtained. Moreover, we gathered the pooled sensitivity and

specificity statistics from the studies in a meta‐analysis, thus providing a

more accurate perspective on the clinical usefulness of machine‐learning
approaches in the context of the diagnosis of pediatric OSA.

2 | METHODS

2.1 | Eligibility criteria

Table 1 summarizes the eligibility criteria used to include studies in the

systematic review and meta‐analysis. These criteria were selected by

consensus from all the authors. Only articles and reviews from the Year

2000 onwards (until February 1st, 2021) and written in English were

considered. This span embraces the boom experimented by machine‐
learning methods applied to health problems. Documents in both “pub-

lished” and “early access” stages were accepted, thus accounting for the

latest findings on machine‐learning applied to pediatric OSA. They were

required to be focused on pediatric OSA diagnosis and also that machine‐
learning methods were used to either directly derive an automatic di-

agnosis or detect the respiratory events (apneas and hypopneas) that are

clinically used to reach a diagnosis. However, only those studies reporting

performance metrics from automatic subject‐based diagnosis were con-

sidered. Here, the term “machine learning” was adopted in the wide

sense, that is, any classification or regression automatic method that

requires a training process to derive a predictive model potentially using

multiple variables. In this way, we can analyze the use and performance

of the simplest models if needed. Moreover, the studies were required to

report sufficient data to enable extraction or computation of the number

of true positive, false negative, true negative, and false positive subjects

for at least one specifically defined apnea‐hypopnea index (AHI)

threshold. Importantly, the performance of the methods was required to

be reported in comparison with the overnight PSG‐derived diagnosis.

2.2 | Information sources and bibliography search

The advanced search functionality of the Web of Science (WoS) and

Scopus electronic databases was used to conduct the initial literature

TABLE 1 Eligibility criteria to include studies in the systematic
review and the meta‐analysis

Eligibility criteria

Focused on pediatric obstructive sleep apnea

Article or Review (published or “early access”)

Written in English

From Year 2000 onwards

Use of machine learning to derive an automatic diagnosis or detect

respiratory events

Reporting patient‐based diagnostic performance metrics (including

those derived from event‐based approaches)

Reporting data enough to derive TP, FN, TN, and FP for one or several

well‐defined AHI thresholds

Polysomnography as diagnostic standard

Abbreviations: AHI, apnea‐hypopnea index; FN, false negative subjects;

FP, false positive subjects; TN, true negative subjects; TP, true positive

subjects.
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screening. Table 2 shows the query strings included within the

searching boxes for each of the databases. The eligibility criteria

related terms were searched in the title, abstract, and keywords.

These terms were chosen by agreement of all the authors of the

study to include suitable vocabulary on both machine learning and

pediatric OSA. Those terms with different spelling in British and

American English were duplicated to embrace both options. The

searches were conducted by two independent researchers (GCG‐T
and DA), who also conducted subsequent reviews of the studies

found using both electronic databases. These studies were assessed

for duplicates, as well as for meeting the eligibility criteria shown in

Table 1. Each researcher proposed a selection of studies to be in-

cluded in the systematic review/meta‐analysis. Discordances were

resolved by consensus. As a secondary data source, those papers

referenced in this initial set of studies were also reviewed by each

researcher to check for eligibility and to form the final set. This was

also obtained by consensus after this last step.

2.3 | Data collection

Table 3 shows the data extracted from each of the studies selected

after completion of the bibliographic search. The studies are gath-

ered in four main categories: general information from the studies,

applied methods, population, and meta‐analysis data. General in-

formation was directly obtained from the search in the electronic

databases (WoS and Scopus) and automatically exported to a

spreadsheet. The remaining data were manually introduced in the

same spreadsheet after careful review of each of the studies.

2.4 | Meta‐analysis

The mada and meta R packages35,36 were used to perform meta‐
analysis of diagnostic performance‐based studies. Total effect size

for univariate sensitivity and specificity diagnostic metrics was esti-

mated using a random‐effects model with a logit transformation of

the input data, that is, TP, FN, TN, and FP obtained from each study.

The Higgins' I2 and the p value of the Cochrane Q statistics were

computed to characterize heterogeneity. In addition, a bivariate di-

agnostic random‐effects meta‐analysis was performed using

summarized receiver‐operating characteristics (SROC) curves to

account for the interdependence of sensitivity and specificity. Funnel

plots were used to assess the influence of publication bias. The trim

and fill method37 from the metaphor R package was subsequently

applied to adjust for this source of bias and correct the effect sizes

derived from the forest plots.

3 | RESULTS

3.1 | Study selection and characteristics

Figure 1 displays a flowchart with the number of studies selected

after each step of the bibliographic search. Sixty‐three documents

were found after the electronic automatic search, either using WoS

(47) or Scopus (16). A total of 10 duplicated studies were identified

within the search results from both databases, and duplicates were

removed from subsequent analyses. The remaining 53 documents

were assessed for meeting eligibility criteria, with only 17 studies

deems as eligible. Up to 25 references from these studies were also

reviewed, and 2 more eligible studies were added to the final set.

Table 4 summarizes the main data obtained from the 19 se-

lected studies. All of them were original articles. For those stu-

dies reporting results from more than one machine‐learning
method, and without any other methodological difference, only

the one highlighted by the authors as the top performing method

was considered. In contrast, results derived using different data

sources (e.g., different biomedical signals) but using equal

machine‐learning methods were all included even though they

were reported in the same study. The following subsections are

devoted to the data analysis included in Table 4.

3.2 | Population characteristics

The studies reported a cumulative sample size of 11,200 children.

Among them, 7891 were used to obtain the metrics to evaluate

the diagnostic performance of their models and are included in

Table 4. However, we were able to identify that some studies

analyzed totally or partially the same subjects, and that there

were only 4767 unique subjects. In addition, individual sample

TABLE 2 Query strings used to conduct the initial screening of documents

Electronic database Query string

WoSa ((TS = (sleep AND (apnea OR apnoea OR snoring OR breathing) AND (pediatric OR paediatric OR childhood OR children)

AND (diagnosis OR detect* OR identify) AND (automated OR machine learning OR simplify OR classifier))))

Scopus TITLE‐ABS‐KEY (sleep AND (apnea OR apnoea OR snoring OR breathing) AND (pediatric OR paediatric OR childhood OR

children) AND (automated OR machine AND learning OR simplify OR classifier) AND (diagnosis OR detect* OR identify))

AND DOCTYPE (ar OR re) AND PUBYEAR > 1999 AND LANGUAGE (english)

Note: The term search was conducted on the title, abstract, and keywords of the documents.

Abbreviation: WoS, web of science.
aYear range, language, and document type are options available outside the search box.
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sizes varied greatly between studies. Overall, the studies covered

the entire nonadult age range. In particular, the two studies with

the largest databases (Hornero et al.16 3602 and Vaquerizo‐villar
et al.24 935 subjects) covered the ranges 2–18 and 0–18 years,

respectively. However, Calderón et al.23 covered only children

between 5 and 10 years. There was consistency among the stu-

dies concerning gender, showing a higher prevalence of male

subjects in the range of 52.0%–65.3%, commensurate with the

previous literature showing no differences in pediatric OSA

prevalence between males and females or slightly increased

prevalence in male subjects.2 This same pattern appears was

replicated in the selected studies herein, whereby 11 of 19 pa-

pers reported less than 60.0% of male prevalence and the re-

maining 8 reported 60.0%–65.3% males. Finally, 18 out of the 19

studies involved symptomatic children, that is, showing high

pretest probability of suffering from OSA. Only the study by

Skotko et al.22 did not recruit subjects on the basis of related

symptoms. However, their study focused on predicting OSA

within a cohort of subjects suffering from Down syndrome, which

is a group at high risk for OSA due to craniofacial and neuro-

muscular tone abnormalities.

3.3 | Data used to train the machine‐learning
models

Despite not including any search term related to biomedical signal

processing in the query strings of Table 2, most of the selected

studies used data from overnight physiological signals to train and

develop the machine‐learning models. Peripheral blood oxygen sa-

turation signal (SpO2) was the predominant signal recorded, with 16

out of 19 studies using it alone (9)16,19,20,23–26,29,30 or associated

with another type of physiological data (8).17,18,27–29,31–33 Airflow

signal (AF) was used in 3 studies,17,28,29 pulse rate variability (PRV)

in 2,31,32 and electrocardiogram (ECG) and actigraphy in one18,21

each. Nonbiomedical signal data (clinical variables, anthropo-

metrics, and demographics) were also included in the analyses

corresponding to five studies.15,18,22,27,33 However, only three of

these studies reported results of models trained exclusively with

this information.15,18,22

3.4 | Machine‐learning methods

A heterogeneous range of machine‐learning methods was used

among the selected studies. Logistic regression was the most fre-

quent (six studies),17,19,20,25,32,33 whereas multilayer perceptron

(MLP) artificial neural network was used in four studies,16,26–28 and

support vector machine (SVM)18,30 and ensemble‐learning adaptive

boosting (AdaBoost)23,29 in two each. Multivariate linear regres-

sion,15 logic learning machine,22 linear discriminant analysis (LDA),31

and quadratic discriminant analysis21 appeared in one each. Inter-

estingly, only one study followed a deep learning approach (con-

volutional neural network, CNN),24 which has demonstrated superior

performances in health‐related problems in the last several years.38

TABLE 3 Data collected from the studies included in the
final set

Data category Data obtained

General

information

from the

studies

▪ Authors

▪ Type of document (article or review)

▪ Publication year (or “early access”

availability)

▪ Journal

▪ Volume

▪ Issue

▪ Digital Object Identifier (DOI)

Applied methods ▪ Machine‐learning methods used

▪ Data source for the machine‐learning
methods

▪ Internal validation conducted

▪ Explainability of the models reached

(reported quantitative data to explain the

models yes/no)

Population ▪ Averaged age of the subjects involved

▪ Sexes proportion

▪ Initial health condition (symptomatic/

asymptomatic)

Meta‐analysis data ▪ TP, TN, FP, and FN subjects

▪ All AHI thresholds reported to reach the

above‐mentioned statistics.

▪ Sample size of the subgroup from which

the above‐mentioned statistics are

derived (e.g., only test set in those studies

following a training/test validation

strategy).

Abbreviations: AHI, apnea‐hypopnea index; FN, false negative subjects;

FP, false positive subjects; TN, true negative subjects; TP, true positive

subjects.

F IGURE 1 Flowchart with the studies involved in each step of
the bibliography search. WoS, web of science
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Efforts to explain the machine‐learning predictions were also

evaluated. Noticeably, only 5 out of the 19 studies reported quan-

titative data indicating further analysis to try to explain the decisions

of their models.15,18,20,22,32 However, no studies attempted to ex-

plain decisions of the most complex models or use the latest ap-

proaches on “explainable artificial intelligence.”39

3.5 | Validation strategies

All the studies compared their results against the AHI derived

from the full PSG, that is., the standard method used to diagnose

pediatric OSA.40,41 AHI values were used to establish four se-

verity categories of OSA (no OSA: AHI < 1 event/hour (1e/h);

mild: 1 e/h ≤AHI <5 e/h; moderate: 5 e/h ≤AHI <10 e/h; and se-

vere: 10 e/h ≤AHI).42 Consequently, most of the studies (n = 17)

reported results for one or more of these AHI thresholds. How-

ever, several studies showed results from other less frequently

used thresholds, such as 2 and 3 e/h, and 8 studies only reported

data for a single AHI threshold.15,17,19,21,23,30,31,33

Several approaches were used to validate the machine‐learning
methods. Two (Training/Test) or three (Training/Validation/Test)

subgroups were used depending on whether the machine‐learning
method required hyperparameters to be tuned. These strategies

were applied directly, that is, with real two or three subgroups, or

including subgroup simulation methods such as leave‐one‐out cross‐
validation (loo‐cv), bootstrapping, or k‐fold cross‐validation (k‐fold‐
cv). Only three exceptions were found to the use of a third real or

simulated subgroup due to hyperparameter tunning. Two of them

were the studies of Calderon et al.23 and Bertoni et al.,18 whose

corresponding AdaBoost and SVM models usually require hy-

perparameter tuning to reach an optimum performance (e.g., penalty

parameters such as learning rate or C, respectively). In contrast,

Xu et al.26 applied the same exact MLP than the one previously

internally validated by Hornero et al.16

3.6 | Meta‐analysis: Forest plots and summary
ROC curves

True positive, false negative, true negative, and false positive sub-

jects obtained from the studies were included in the meta‐analysis.
Only data from the AHI thresholds 1, 5, and 10 e/h were used as

there was insufficient number of studies reporting data on 2 and

3 e/h. This action resulted in 17 out of 19 studies being included in

the meta‐analysis.
Figures 2‐4 show the forest plots corresponding to the analyses

of sensitivity and specificity for the three above‐mentioned AHI

thresholds. Individual and composite results are provided for each

statistic, including 95% confidence intervals. Results for studies in-

volving and not involving SpO2 are provided separately in two sub-

groups as well. Heterogeneity measures are also displayed. As can be

observed, pooled sensitivity decreases as AHI threshold increases,

showing values of 0.921 [0.866; 0.955], 0.762 [0.722; 0.798], and

0.682 [0.564; 0.780] for 1, 5, and 10 e/h, respectively. An increasing

opposite tendency is displayed for pooled specificity, which shows

0.386 [0.232; 0.566], 0.851 [0.765; 0.909], and 0.958 [0.934; 0.973],

respectively. In all cases, heterogeneity is significantly high according

to the p value of Cochrane Q (<0.01) and Higgins' I2 values, which

ranges 72%–95% thus justifying the choice of the random‐effects
model to conduct the meta‐analysis. All the pooled sensitivity and

specificity values are higher when considering only those results

involving SpO2 data except in the cases of the sensitivity for the AHI

thresholds 1 and 5 e/h. In these two instances, the statistics were

slightly higher for the results not involving SpO2 at the cost of no-

tably wider 95% confidence intervals. Still, the pooled overall

F IGURE 2 Forest plot for the univariate (A) sensitivity and (B) specificity meta‐analyses of the studies using a threshold of 1 event/hour for
positive pediatric OSA. In the subgroups analysis g = 1 identifies the studies using oximetry features (SpO2) while g = 0 represents studies using
other data sources. OSA, obstructive sleep apnea
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performance when using SpO2 data is clearly higher for both mod-

erate and severe pediatric OSA. Similarly, heterogeneity decreases in

all statistics when considering only results involving SpO2 data

(64%–93%). As anticipated by the pooled metrics, the top perfor-

mance methods were reported for moderate and severe OSA and in

studies involving SpO2 data. Accordingly, the deep learning approach

(a CNN) using only SpO2 data, proposed by Vaquerizo‐Villar et al.,24

reached the highest overall figures for moderate OSA in their 935

test subjects (73.4% sensitivity, 94.3% specificity, 88.3% accuracy),

with the proposal by Garde et al.31 (LDA on SpO2 + PRV data)

reaching slightly lower overall values in their 146 subjects (89.3%

sensitivity, 83.3% specificity, 85.6% accuracy). On the other hand,

Bertoni et al.18 proposed a SVM method applied to clinical,

actigraphy, and SpO2 data that reached the highest performance for

severe OSA in their 187 subjects (93.9% sensitivity, 100.0% speci-

ficity, 98.4% accuracy). Similarly, the above‐mentiuoned proposal by

Vaquerizo‐Villar et al.24 reached the next highest results (76.6%

sensitivity, 97.3% specificity, 93.9% accuracy).

Figure 5 displays the SROC curves for bivariate analysis,

which account for interdependencies between sensitivity and

specificity at each AHI threshold. The shape of the curves agrees

with the values of the pooled sensitivity/specificity pairs shown

above for each case. Moreover, an increase in the area under the

SROC curves (AUC) is observed as the AHI threshold is higher,

reaching values of 0.791, 0.826, and 0.940 for 1, 5, and 10 e/h,

respectively.

F IGURE 3 Forest plot for the univariate (A) sensitivity and (B) specificity meta‐analyses of the studies using a threshold of 5 events/hour for
positive pediatric OSA. In the subgroups analysis g = 1 identifies the studies using oximetry features (SpO2) while g = 0 represents studies using
other data sources. OSA, obstructive sleep apnea

F IGURE 4 Forest plot for the univariate (A) sensitivity and (B) specificity meta‐analyses of the studies using a threshold of 10 events/hour

for positive pediatric OSA. In the subgroups analysis g = 1 identifies the studies using oximetry features (SpO2) while g = 0 represents studies
using other data sources. OSA, obstructive sleep apnea
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3.7 | Publication bias

Figure 6 shows the funnel plots of sensitivities (left column) and

specificities (right column) for each of the three AHI thresholds (1, 5,

and 10 e/h from upper to lower rows). Filled black dots represent

data from real studies, whereas blank dots represent simulated

studies added by means of the trim and fill method to correct for

possible publication bias. Accordingly, for AHI = 1 e/h, 5 studies were

added to sensitivity and 2 to specificity; for AHI = 5 e/h, 6 studies were

added to sensitivity and none to specificity; and for AHI = 10 e/h,

1 study was added to sensitivity and 5 to specificity. All the added

studies represent proportions in the range 0%–26% among the sum of

real and simulated results for each case.

Table 5 summarizes the corrected pooled sensitivities, specifi-

cities, and Higgins' I2 values for each AHI threshold when considering

the added studies. The number of these and the total number of

results are also shown for each case. All the sensitivity and specificity

values from all AHI thresholds are reduced compared to those ori-

ginally reported in forest plots, except for the specificity in 1 e/h that

increased by 11 decimal points. The decreased decimal points of the

remaining results are in the range 2–7. Moreover, all the hetero-

geneity values were slightly higher than the original.

4 | DISCUSSION

In this work, we conducted a systematic review and meta‐analysis on
the reliability of machine‐learning methods to diagnose pediatric

OSA. Nineteen studies spanning the period between 2004 and 2021

were included and involved 4767 unique pediatric subjects. We

found decreasing pooled sensitivities and increasing pooled specifi-

cities as OSA severity worsened, thus reflecting the well‐known

F IGURE 5 SROCs for the meta‐analysis of studies using the thresholds for positive pediatric OSA of (A) 1 event/hour (e/h), (B) 5 e/h, and (C)
10 e/h. e/h, e/h, event/hour; OSA, obstructive sleep apnea; SROC, summary receiver‐operating characteristics

F IGURE 6 Funnel plots for each of the three AHI thresholds (from upper to lower rows, 1, 5, and 10 e/h) considering sensitivities (left
column) and specificities (right column). AHI, apnea‐hypopnea index; e/h, event/hour
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threshold effect of diagnostic test accuracy meta‐analyses.43 Very

high pooled specificity (0.931 [0.894; 0.955]) was reached for the

severe OSA AHI threshold (10 e/h), which was accompanied by a

moderate sensitivity (0.652 [0.530; 0.758]). Concurrently, this mod-

erate sensitivity and the very low number of false positives reflected

in the specificity value, reveals high reliability when machine‐learning
methods assign a subject to the severe OSA group. This result is also

supported by the SROC analysis conducted, in which the area under

the curve reached 0.940 when evaluating the same severity degree.

Moreover, if only results involving SpO2 data are considered, both

sensitivity and specificity of severe OSA notably rise (0.745 and

0.964, respectively), and improve the diagnostic accuracy of mod-

erate OSA (AHI = 5 e/h) to nearly the same reliability level (0.751

sensitivity and 0.895 specificity). These are meaningful and highly

encouraging findings since moderate to severe children are those

who are at higher risk of cardiovascular and neurocognitive

morbidity44,45 and they benefit the most of an early diagnosis and

access to treatment.46 However, important efforts are still needed to

improve the performance of these approaches to encompass less

severe disease criteria, as well as enhance the level of confidence of

healthcare providers and reduce their reluctance to implement the

use of machine learning‐derived tools in clinical practice.

4.1 | Risk of within‐studies biases

Several potential biases were detected among the studies included in

this work. However, the roots of many of these biases reside in the

sampled population. Machine‐learning methods have increased their

data requirements as a natural consequence of the evolution of the

mathematical techniques.47 At the same time, they have also in-

creased their performance.47 However, insufficient sample sizes

have forced several of the published studies to use simple and re-

latively older and less performant machine‐learning methods such as

logistic regression (n = 6 studies), even though these studies were

published in the last 5 years (2015–2019). Noticeably, only one study

used the much more powerful deep‐learning approach.38 Eventually,

the use of outdated methods may be hindering the progression and

utility of machine‐learning algorithms in their ability to reach higher

reliability and consequently adoption into the clinical realm. Of note,

a similar problem concerns the methodology used to validate the

machine‐learning models. Scarcity of data greatly affects the number

of subgroups in which the sample can be split, which should be

ideally related to the degrees of freedom of the models and, in

practice, being a minimum of three (Training/Validation/Test) if the

machine‐learning method requires hyperparameter tuning.48 Many

studies included in this review, however, needed to use techniques

such as leave‐one‐out cross‐validation, k‐fold cross‐validation or

bootstrapping to simulate additional groups, thus biasing their re-

sults, and consequently, potentially affecting the accuracy of the

estimates of disease severity. We would expect that involving more

subjects would lead to the use of more precise machine‐learning
techniques as well as proper validation strategies, which could in-

crease the performance and decrease the heterogeneity shown in

this study. Another potential bias relates to the cohorts used, since

several studies included the same subjects in more than one study (of

7891 subjects in the studies, only 4767 were not involved in more

than one study). This is due to the fact that two studies from dif-

ferent research groups23,24 used the Children Adenotonsillectomy

Trial (CHAT) public database.49 Second, 14 out of the 19 studies

shared at least one of their authors, thus potentiating the above‐
mentioned overlap. Although duplicates may bias the results, we

surmise that 4767 unique subjects provide sufficient statistical

power to reach valid conclusions.

We would like to point out two additional sources of bias.

First, none of the studies included a control group of healthy

children from the general population. All but one study involved

children manifesting OSA‐related symptoms regardless of whe-

ther they were ultimately diagnosed as suffering from OSA. Also,

another study involved a cohort of children suffering from Down

syndrome. The inclusion of control subjects might affect the per-

formance of machine‐learning methods. However, it would be

expected that the possible misclassification were focused on more

mild OSA, thus not affecting the conclusions about the reliability

to diagnose more severe OSA. Second, the prevalence of OSA

among male and female subjects is still under discussion.2 How-

ever, all the studies reported higher proportion of male children,

and some of them remarkably higher. These two issues need to be

TABLE 5 Summary of the pooled corrected statistics after assessing for publication bias

AHI threshold

Added studies

(Se/Sp)

Total number of results

(Se/Sp) Se [95% CI] Sp [95% CI] I2 (Se) [95% CI] I2 (Sp) [95% CI]

1 e/h 5/2 20/17 0.849 0.499 92.7% 93.4%

[0.735; 0.919] [0.297; 0.701] [90.1%; 94.7%] [90.8%; 95.2%]

5 e/h 6/0 26/20 0.714 0.832 77.7% 95.1%

[0.660; 0.762] [0.759; 0.887] [67.8%; 84.6%] [93.5%; 96.2%]

10 e/h 1/5 15/19 0.652 0.931 87.3% 85.1%

[0.530; 0.758] [0.894; 0.955] [80.6%; 91.6%] [78.0%; 89.9%]

Abbreviations: AHI, apnea‐hypopnea index; CI, confidence interval; Se, sensitivity; Sp, specificity.
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addressed in future studies to further assess reliability of

machine‐learning methods.

Finally, we should remark that only a minority of studies re-

ported further analyses to try to explain the decisions taken by their

associated machine‐learning models. Similarly, these were conducted

only when simpler decision algorithms were adopted, and did not

follow the latest standards on “explainable artificial intelligence,”

such as the model‐agnostic method Shapley Additive Explanations,39

which unifies most of its precursors. Although this issue may not bias

the performance assessment of our analyses, we think that not ex-

plaining the principles operating in the context of automated pro-

cesses contributes to the traditional “black box” perception of

machine learning50 and has an important negative impact on the

confidence of healthcare providers.

4.2 | Heterogeneity and risk of biases across
studies

Several sources of heterogeneity among the studies were detected

and may explain the high Higgings' I2 values reached. We have de-

tected 10 different machine‐learning algorithms among the studies

reviewed, and several of these have been used to implement dif-

ferent approaches (e.g., classification vs. regression; binary classifi-

cation vs. multiclass classification). Moreover, the physiological

information used to train and obtain the machine‐learning models

also varied among studies. SpO2 data predominated, but there were

also data from AF, actigraphy, ECG, clinical variables, anthropo-

metrics, and demographics. The effect of these different approaches

on I2 was shown explicitly when comparing the noticeably lower

heterogeneity degree reached by the studies involving SpO2 data

with those not involving it. Other potential heterogeneity precursors

have been already mentioned. Issues such as the different sample

sizes, validation strategies, and sex distribution may have influenced

as well. However, according to the size of the 95% confidence in-

tervals reached in our analyses, heterogeneity appears to have less

effect in the results from moderate and severe OSA.

Two potential across‐studies risk of biases have been also

identified. First, we have already mentioned the threshold effect

described in the literature for diagnostic accuracy testing using

meta‐analyses.43 Univariate sensitivity/specificity analyses are

common approaches, but bivariate SROC analysis should be also

provided to conduct a more complete assessment of the test un-

der study.51 Cautions are needed with SROC interpretation when

studies are not homogeneous. However, the derived area under

the curve statistic has been shown to be a useful upper bound

approximation even in the presence of heterogeneity.51 Finally,

we assessed publication bias by means of the trim and fill method

supported by funnel plots. In this regard, the small proportion of

simulated results added, along with the minor changes in the

pooled sensitivity and specificity values produced, lead us to think

that the bibliography, as include, reflects a reliable sample of the

results under study.

4.3 | Other limitations

Other limitations need to be considered in our study. First, the

eligibility criteria for the studies were chosen using consensus by the

authors, which include both machine‐learning engineers and sleep

physicians. We followed the PICOS recommendation (participants,

interventions, comparisons, outcomes, and study design).52 However,

it is possible that other researchers may have selected different

eligibility criteria. Similarly, the terms used to conduct the initial

search, as well as the data collected from the studies agreed with

these criteria and the purpose of our study. However, machine‐
learning terminology is not always homogeneous across the related

fields, and it is possible that scientists from other research areas

could have used different nomenclatures and collected different

data. Moreover, we have used two different electronic databases to

conduct the initial search (WoS and Scopus). Although these are two

of the largest electronic databases, it is possible that other biblio-

graphic sources may index more suitable studies. Finally, documents

not written in English were not included.

5 | CONCLUSIONS AND
RECOMMENDATIONS

We found a high reliability of machine‐learning methods to auto-

matically diagnose severe pediatric OSA, thus benefiting those chil-

dren at higher risk of suffering comorbidities. Pooled univariate and

bivariate statistics derived from a representative sample of results

strongly supported this conclusion. We have also shown that, un-

surprisingly, the performance of the machine‐learning models is de-

pendent on the source of the data used to obtain them, and that

overnight SpO2 information increases its reliability. Thirdly, we

consider deep‐learning approaches as more advanced options with a

greater potential for improved performance. However, we also

identified some problems that may preclude the implementation of

these techniques in real environments. To try to solve such con-

straints, we propose the following recommendations:

1. Future studies should address the size and characteristics of the co-

hort. Control groups of asymptomatic healthy children should be

included in the training, validation, and test stages of the

machine‐learning methods. Additionally, the number of subjects

involved should be large enough to let researchers use the latest

data‐demanding machine‐learning approaches, as well as properly

evaluate them. Larger databases would also help cope with dif-

ferent phenotypes in pediatric OSA.53

2. Inclusion of deep‐learning techniques is needed. Deep‐learning ar-

chitectures and algorithms should be considered in future studies.

Currently, there exists a range of these methods that are showing

remarkable performances in several healthcare issues.38 They are

particularly useful in detecting hidden patterns from temporary

or spatially related data, such as biomedical signals or medical

images.38 Therefore, these techniques may improve the results
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reported in this meta‐analysis, provided that sufficient high

quality data are available to implement them.

3. Efforts should be made to explain the outcomes of the machine‐

learning methods. Beyond increasing the performance of the

machine‐learning methods, addressing the “black box” issue will

be crucial to boost the confidence and implementation of these

diagnostic approaches in healthcare settings. A new computer

science field is growing fast under the term “explainable artificial

intelligence” as a response to the demand of explainable models

from science, industry, and administration due to the need to

justify decisions taken based on automated algorithms.50 New

developments in these techniques not only allow for under-

standing automated decisions but also facilitate discovery of new

knowledge in the fields of application,50 especially when com-

bined with deep‐learning methods.

4. Sources of OSA related information other than SpO2 should be further

assessed. Although SpO2 has demonstrated superiority as source

of patient relevant information in this study, there is a clear im-

balance with the studies using other types of physiological data.

Future studies should therefore explore other relevant measures

and examine whether combinatorial datasets lead to further

accuracy enhancements.
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