
  

  

Abstract— Spatial and frequency characterization of sleep 

spindles have been extensively addressed using M/EEG or fMRI 

recordings. However, its intraindividual variability across time 

has not been addressed. Here we propose to assess the 

intraindividual variability of sleep spindles in a time-resolved 

way by means of a trial-to-trial-variability (TTV) measure. For 

that purpose, the EEG of 26 healthy subjects were recorded 

overnight. After an exhaustive preprocessing pipeline to remove 

artifacts, spindles were automatically detected using a complex 

demodulation-based method. Then, the Wavelet Scalogram was 

estimated to validate it. Spindle TTV of each participant was also 

computed for all the conventional EEG frequency bands. Root 

mean square (RMS) of each TTV signal was calculated as a 

measure of the total variability of each spindle. Results showed 

significant differences in the variability between frequencies. 

Specifically, RMS in the beta-1 frequency band showed higher 

values as compared to all the other frequency bands (p<0.001). 

TTV curves showed a dichotomic trend, with lower frequencies 

showing an increase in the variability before the spindle onset, 

and higher frequencies showing such increase after the onset. 

The dependence of the spindle variability with the frequency 

could be explained by the influence of the multiple cortical 

generators involved. 

 

Clinical Relevance— Sleep spindles are similarly affected in 

different cognitive-related disorders, which supports the 

relevance of assessing abnormal sleep patterns as a possible 

cause for such cognitive deficits.  

I. INTRODUCTION 

Sleep spindles are characteristic electroencephalographic 
(EEG) bursts around the sigma frequency band (11-17 Hz), 
which usually last between 0.5 and 2 s [1]. Spindles are more 
frequent in the second phase of non-rapid eye movement sleep 
(N2), other phases of sleep can contain spindles thought [1]. 
During the last years, several attempts to characterize their 
intracortical neural pathways have been made [2], [3]. 
However, the role of the activation of brain cortical generators 
and their dependency with frequency, remain relatively 
obscure. Actually, whereas most of the spindles appear 
synchronized and widely distributed on the cortex, local 
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spindles exist too [4], suggesting different mechanisms and 
different functions. 

It is well-known that spindles are not isolated events. 
Indeed, a hierarchical nesting of slow oscillations (SO), 
spindles, and ripples is frequent during sleep [5]. Particularly, 
spindles are modulated by the up-state of the SO (0.75 Hz), 
which in turn mediate in the generation of high frequency 
bursts (around 100 Hz in human hippocampus), i.e., ripples 
[5], [6]. It is thought that the hierarchical combination of these 
three signals is responsible for sending information units to 
distributed neocortical sites for long-term storage [5]. 

Supporting these findings, diverse studies have associated 
basic sleep spindles features with the intelligence quotients 
(IQ) [7], as well as several cognitive traits [8], [9]. 
Interestingly, there are studies that have provided evidence on 
the relationship between reduced activity or disrupted 
spatiotemporal evolution of sleep spindles and certain 
neurological, psychiatric, and respiratory diseases, such as 
Alzheimer’s disease [10], schizophrenia [11] or sleep apnea 
[12]. In this context, sleep spindle characterization is 
becoming a crucial tool to elucidate the role of sleep in brain 
plasticity [13], memory [2], [3], [14], and intelligence [7]. 

Although the above mentioned hierarchical nesting 
frequency results in a complex electrophysiological signal 
(SO-spindles-ripples), most of these studies only involved 
basic features from sleep spindles to establish associations 
between the electrophysiological signals and cognitive traits. 
Among these basic features, the spindle density (number of 
spindles per minute), total number of spindles, spindle 
duration, and spindle amplitude stand out [5]. Much less 
frequently, spectral measures have been also used to 
characterize spindles by means of its frequency, power or 
coherence [15]. However, all these studies assessed spindle 
features using grand-average measures across subjects, 
leaving aside the intraindividual spindle variability throughout 
the sleep time. 

Against the general trend, negative results have also been 
achieved. One example is the lack of correlation between 
spindle features and specific cognitive traits (correlated in 
other studies) [7]. At least in part, it may be due to the fact that 
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certain characteristics of the spindles have been only 
considered in terms of mean. However, a combination of 
different types of spindles (i.e., spindle variability) could be 
the basis for the underlying mechanisms responsible for 
appropriate long-term storage in neocortical sites. Supporting 
this assertion, opposite correlation has been found between 
“fast” and “slow” spindles and IQ measures (e.g., [16]). These 
studies provide previous evidence on the importance of 
spindles variability and their dependence on the frequency for 
correct cognitive development. We here hypothesized that, 
despite the relatively narrow frequency band of the spindles, 
the spindle variability is frequency-dependent, showing 
different behavior for each conventional frequency band of the 
EEG. In other words, the waves in which spindles are 
embedded not only modulate the spindle amplitude or 
frequency, but also its variability throughout the night. 

On the basis of the above hypothesis, this study is aimed at 
analyzing the spindle variability in the conventional EEG 
frequency bands in order to assess the spindle dynamics and 
its dependence with the frequency. For this purpose, after an 
automatic spindle detection, trial to trial variability (TTV, an 
index of the instability degree) was computed for all subjects 
in the EEG frequency bands.  

II. MATERIALS AND METHODS 

A. EEG recordings and preprocessing 

Twenty-six healthy adults (age =26.00 ± 6.69 years, 18 
women) free from sleep disorders were recruited in this study. 
Participants underwent overnight polysomnography (PSG) 
using the Embla Titanium PSG system (Natus, San Carlos, 
CA). EEG, electrooculographic (EOG), and 
electromyographic (EMG) signals were acquired with 
impedances < 5 kΩ, at a sampling rate of 500 Hz, referenced 
to FPz. EEG was acquired using 11 gold-plated electrodes 
placed according to the conventional 10-20 system. 

The EEG signals were re-referenced offline to the average 
activity of the mastoid derivations for sleep stage scoring. 
Sleep stages (wake before sleep, N1, N2, N3, REM), as well 
as noisy segments, were marked using RemLogic analysis 
software (Natus) in epochs of 30 seconds, as recommended by 
the American Academy of Sleep Medicine [1]. After removing 
noisy epochs, signals were filtered using a band-pass finite 
impulse response (FIR) filter between 1 and 70 Hz using a 
Hamming window. Finally, an adaptative epoch rejection 
protocol using a statistical-based thresholding method was 
applied: (i) the mean and standard deviation of each channel 
was computed, (ii) epochs that exceeded mean ± 4 × standard 
deviation in at least two channels were discarded [17]. After 
resampling EEG data to 250 Hz, automatic spindle detection 
was carried out in the cortical midline electrodes (Fz, Cz and 
Pz) using a previously validated method [18]. Spindles were 
then segmented from 1 second before the spindle onset to 2 
seconds after it, defining each temporal window as a single 
trial, i.e., 𝑥[𝑛] with 𝑛 representing samples from -250 to 500. 
All the preprocessing was applied using in-house MATLAB 
(The MathWorks, 2017b) scripts and the EEGLAB toolbox 
[19]. 

B. EEG processing: Wavelet Scalogram (WS) 

Although the automatic spindle detection method has 
already been widely validated in previous studies [18], this 

dataset lacked sleep-related events labeled by an expert. For 
this reason, we decided to control for the right functioning of 
the method by means of a thorough time-frequency analysis. 

The non-stationarity of the EEG recordings must be 
considered for such time-frequency analysis. When transient 
states of EEG are analyzed, as the case of spindles, non-
stationarity becomes even more critical. This forces to use 
alternative methods to the classical Fourier analyses. In this 
study, Continuous Wavelet Transform (CWT) was used for 
time-frequency analysis. Specifically, the complex Morlet 
wavelet was chosen as “mother wavelet” to provide a 
biologically plausible fit to the EEG signals [20]. Bandwidth 
and wavelet center from the complex Morlet, as well as the 
dilatation factor for the CWT, were set as in [20] in order to 
obtain a balance between time and frequency resolutions. 

The Wavelet Scalogram (WS) was subsequently computed 
from the CWT of each trial, channel and subject. WS provides 
a summary of the energy distribution (time and frequency) for 
each spindle detected. We here normalized the WS so that the 
summation across frequency was 1. Thus, it can be interpreted 
as a probability density function: 

 𝑊𝑆𝑛(𝑘, 𝑠) =
‖𝐶𝑊𝑇(𝑘,𝑠)‖2

∑ ‖𝐶𝑊𝑇(𝑘,𝑠)‖2
𝑠

, () 

where 𝑘 represents the translation factor and  𝑠 the dilatation 
factor. 

C. EEG processing: trial-to-trial variability (TTV) 

With the aim of assessing the spindle variability across 
trials, TTV was computed for each subject. TTV index was 
defined as the normalized standard deviation (SD) in a time-
resolved way. The normalization was conducted with respect 
to the SD at the spindle onset by a successive subtraction and 
division: 

 𝑇𝑇𝑉[𝑛] =
𝑠𝑡𝑑(𝑥[𝑛])−𝑠𝑡𝑑(𝑥[0])

𝑠𝑡𝑑(𝑥[0])
 () 

where 𝑠𝑡𝑑(∙) represents the SD function and 𝑥[0] is the EEG 
signal at the stimulus onset. 

Normalized TTV index was then computed for the EEG 
conventional bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 
Hz), beta-1 (13-19 Hz), beta-2 (19-30 Hz) and gamma (30-70 
Hz).  

D. Statistical analysis 

Root mean square (RMS) of the TTV index was computed 
as a statistic of the variability degree in each frequency band 
and subject. Then, after confirming that the parametric 
assumptions did not meet, Friedman test was used to assess the 
effect of the frequency on the RMS of the TTV. Finally, 
Wilcoxon signed-rank test was used for pairwise comparisons.  

III. RESULTS 

A. Sleep spindles statistics 

Statistics about the total number of spindles automatically 
detected in the three selected channels, as well as their duration 
(mean and SD), are summarized in Table 1. Considering all 
participants together, more than 100,000 spindles were 
detected in Fz, Cz and Pz, with longer durations and higher 
recurrence on the parietal lobe (see Table 1).   



  

In order to validate the automatic spindle detection 
procedure, WS was calculated for all the trials. Figure 1 shows 
the grand-averaged scalogram across trials, channels and 
subjects, along with the spectral power in such windows of 3 
seconds (right panel). A peak of power was observed around 
13 Hz in the period between the spindle onset and 0.5 seconds. 
The figure reveals that most of the spindles detected are shorter 
than 1 second, which is coherent with the average duration 
showed in Table 1 (0.9 s).  

B. Sleep spindles variability 

Once assessed the correct spindle detection, the 
normalized TTV index with respect to the spindle onset was 
calculated. Figure 2 shows the averaged spindle variability for 
each EEG frequency band. Depending on the band, a different 
trend of the TTV can be observed, which reveals a frequency-
dependent nature of the spindle variability. Lower frequencies 
(delta and theta) showed a slight increase on the spindle 
variability before the spindle onset. By contrast, and higher 
increased variability was shown in alpha and beta-1, with beta-
2 and gamma showing slight increase.  

RMS was calculated for each participant to assess the 
variability degree of each band. Figure 3 shows the distribution 
of RMS for all the frequency bands. Friedman test revealed a 
statistically significant effect of the frequency band in the 

RMS distribution (p<0.001, 2=59.67). Interestingly, beta-1 
showed the higher variability degree, with statistically 
significant differences when compared with the remaining 
frequency bands (p<0.001, Wilcoxon signed-rank test). 
Similarly, alpha showed statistical significant differences with 
delta (p=0.003, Z=2.94) and theta (p=0.003, Z=2.94), but not 
beta-2 or gamma (p>0.05).  

IV. DISCUSSION 

Using overnight EEG, we investigated the dependence of 
the spindle variability on the frequency through the assessment 

of differences in the TTV for the conventional EEG frequency 
bands. RMS was used to quantify the degree of spindle 
variability for each participant and band.  

TTV curves showed different shapes depending on the 
frequency band, with an increase in variability in the lower 
frequencies before the spindle onset, followed by an increase 
in the higher ones after it. These findings can be linked to the 

 

Figure 3. Root mean square of the TTV for each frequency band. A 

statistically significant effect of the frequency band was shown (** 

p<0.001, Friedman test), with higher values in the beta-1 frequency band. 

TABLE I.  SPINDLE STATISTICS, MEAN (SD) 

 
Electrode 

Fz + Cz + Pz Fz Cz Pz 

# spindles per 

subject  

4425.9 (720.1) 
1398.2 

(244.8) 

1476.2 

(250.3) 

1551.4 

(240.0) 

spindle duration 

(seconds) 
0.9 (0.3) 

0.8 

(0.3) 

0.9 

(0.3) 

0.9 

(0.3) 

 

 

Figure 1. Averaged Wavelet Scalogram. The peak in power around 13 Hz 

after the spindle onset proves a suitable spindle detection by the algorithm. 

The colormap also reveals that most spindles have an average spindle 

duration shorter than 1 second. 

 

Figure 2. Spindle variability for each EEG frequency band by means of the 

normalized TTV index. Lower frequencies bands (delta and theta) show 

an increase on variability before the spindle onset. On the contrary, 

increased variability is shown in intermediate and higher frequencies 

(mainly in beta-1). 



  

frequency nesting produced during spindle generation. 
Previous studies showed the relevance of the SO in bundling 
spindles [5], [14]. Concretely, it is though that the depolarizing 
effect secondary to the SO up-state facilitates the spindle 
generation [5]. This increase on variability previous to the 
spindle burst should be more evident on the lower frequency 
bands, which is exactly what Figure 2 shows. On the other 
hand, spindles produce grouped and embedded ripples in the 
spindles themselves [5]. Therefore, the high frequencies 
associated with ripples should appear after the spindle 
generation. This could be observed in higher frequencies as an 
increase on the variability of the EEG signal after the spindle 
onset, which again is showed in Figure 2. For both lower and 
higher frequencies, the observed EEG variability across trials 
time-locked with the spindle onset is linked to the probability 
of occurrence of SO and ripples, since spindles could appear 
alone, without being hierarchically nested [5]. 

A different explanation should be provided for 
intermediate frequencies as alpha and beta-1. As mentioned, 
sigma frequency comprises high alpha and low beta-1. During 
the spindle burst, an increase on the variance of the ongoing 
EEG signal is produced. This increase in signal energy is 
related to the peak observed on the WS (see Figure 1). 
However, it is important to note that an increase on the signal 
variance or energy does not involve an increase on the signal 
variability across trials, which is what Figure 2 shows by the 
TTV. To provide a possible explanation of the TTV increase, 
we rely on the additivity concept of the EEG. Previous studies 
proposed the linear superposition model as the basis in the 
EEG rest-task interaction (e.g., [21], [22]). They suggest that 
the neural activity during an event evoked externally 
(exogenous activity) or internally (endogenous activity) 
overlaps in an additive and linear way with the ongoing 
activity [21], [22]. According to the Law of Total Variance, a 
direct consequence of this model is that the variance during the 
event (a spindle in this case) should always be increased. This 
model seems to be successful between 0 and 1 second 
approximately, where the variance of the SO, the spindles, and 
the ripples would be summed up in a linear manner. However, 
this model would be valid only for the intermediate and higher 
frequency bands. An alternative model has been also 
proposed; it is based on the nonadditive interaction between 
ongoing and event-related activity, which shows that the 
additive model is not valid under different conditions in fMRI 
[23] or electrophysiological recordings [24]. Our results 
extend these findings to suggest that, as for the spindle 
variability, the correct model could depend on the frequency. 

V. CONCLUSION 

The great dependence between spindle variability and 
frequency showed in this study is probably linked to the 
hierarchical nested signals that involve the spindle bursts. It 
emphasizes the relevance of multiple cortical regions on 
spindle generation. To reinforce this hypothesis, future studies 
should assess whether particular patterns of sleep spindles are 
related to cognitive functions depending on the cortical source 
involved in its generation. 
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