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Heart rate variability spectrum characteristics in children with
sleep apnea
Adrián Martín-Montero 1, Gonzalo C. Gutiérrez-Tobal1,2, Leila Kheirandish-Gozal3, Jorge Jiménez-García1, Daniel Álvarez1,2,4,
Félix del Campo1,2,4, David Gozal3 and Roberto Hornero1,2

BACKGROUND: Classic spectral analysis of heart rate variability (HRV) in pediatric sleep apnea–hypopnea syndrome (SAHS)
traditionally evaluates the very low frequency (VLF: 0–0.04 Hz), low frequency (LF: 0.04–0.15 Hz), and high frequency (HF: 0.15–0.40
Hz) bands. However, specific SAHS-related frequency bands have not been explored.
METHODS: One thousand seven hundred and thirty-eight HRV overnight recordings from two pediatric databases (0–13 years)
were evaluated. The first one (981 children) served as training set to define new HRV pediatric SAHS-related frequency bands. The
associated relative power (RP) were computed in the test set, the Childhood Adenotonsillectomy Trial database (CHAT, 757
children). Their relationships with polysomnographic variables and diagnostic ability were assessed.
RESULTS: Two new specific spectral bands of pediatric SAHS within 0–0.15 Hz were related to duration of apneic events, number of
awakenings, and wakefulness after sleep onset (WASO), while an adaptive individual-specific new band from HF was related to
oxyhemoglobin desaturations, arousals, and WASO. Furthermore, these new spectral bands showed improved diagnostic ability
than classic HRV.
CONCLUSIONS: Novel spectral bands provide improved characterization of pediatric SAHS. These findings may pioneer a better
understanding of the effects of SAHS on cardiac function and potentially serve as detection biomarkers.

Pediatric Research (2021) 89:1771–1779; https://doi.org/10.1038/s41390-020-01138-2

IMPACT:

● New specific heart rate variability (HRV) spectral bands are identified and characterized as potential biomarkers in pediatric
sleep apnea.

● Spectral band BW1 (0.001–0.005 Hz) is related to macro sleep disruptions.
● Spectral band BW2 (0.028–0.074 Hz) is related to the duration of apneic events.
● An adaptive spectral band within the respiratory range, termed ABW3, is related to oxygen desaturations.
● The individual and collective diagnostic ability of these novel spectral bands outperforms classic HRV bands.

INTRODUCTION
Pediatric sleep apnea–hypopnea syndrome (SAHS) is a respiratory
disturbance defined by periods of total airflow interruption
(apnea) and/or significant airflow decrease (hypopnea).1,2 It is
highly prevalent, with up to 5% of the general pediatric
population being affected,2 and has been related to increased
risk for several cardiovascular morbidities, such as left and right
ventricular hypertrophy, increases in systemic and pulmonary
vascular blood pressure, alterations in autonomic regulation, and
cerebral blood flow and perfusion.2

Pediatric SAHS is traditionally diagnosed using overnight
polysomnography (PSG).3,4 To this effect, children will spend a
night in a laboratory, while up to 32 biomedical signals are
registered, including the electrocardiogram (ECG).4 These signals
are then evaluated and scored by medical experts using well-
defined criteria, and several indices of respiratory disturbance are

extracted, among which the apnea–hypopnea index (AHI) is the
most frequently used. AHI consists of the total of apneic and
hypopneic events per hour of sleep (e/h) and defines both SAHS
presence and severity.4 Although the PSG is accepted as the
reference diagnostic method for SAHS, it is time-consuming,
expensive, and potentially distressing for pediatric subjects.5,6 In
the search for alternatives that can address these issues while also
evaluating cardiovascular morbidity risks, various studies have
focused on the analysis of an abbreviated set of the signals
containing cardiac information to gain insights into the cardiac
dynamics in children with SAHS.5,6

Heart rate variability (HRV), a signal derived from the ECG, is a
measure of the fluctuation over time of the period between
successive heartbeats.7 HRV assesses cardiac health and provides
a better understanding of autonomic nervous system (ANS)
homeostasis, which regulates cardiac activity.7 The ANS controls
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the response of the heart to respiratory events, with a recurrent
pattern of progressive bradycardia/abrupt tachycardia reflecting
activation and deactivation of two of the ANS branches, namely,
the parasympathetic and the sympathetic nervous systems.8,9 This
periodic behavior has motivated previous spectral analyses of
HRV, both in adults10–13 and children.14–25

Past studies analyzed the classical HRV spectral bands: very low
frequency (VLF), low frequency (LF), and high frequency (HF)
bands, which have fixed boundaries (0–0.04, 0.04–0.15, and
0.15–0.40 Hz, respectively).26 Nevertheless, some recent work in
adults indicates that SAHS modifies the HRV spectrum in a
frequency range comprising portions of the VLF and LF bands,10

suggesting that specific SAHS-related frequency bands may also
be present in children with SAHS. Furthermore, previous studies
have reported that HF, which is known as a respiratory-modulated
band,7 is strongly influenced by age, regardless of health
condition.27 Likewise, it has been shown that cardio-respiratory
coordination increases during apneic events,28 which underlines
the influence of the respiration on heart rate. Age-related
alterations are reflected in the frequency at which respiratory
peak within HF occurs,29–32 suggesting that a subject-adaptive
analysis is more accurate for this frequency range. Notwithstand-
ing, all previous HRV analyses in pediatric SAHS neglected to
incorporate the changes in respiration related to age.33

Based on these considerations, we hypothesized that pediatric
SAHS-specific frequency bands of interest are present and
embedded in the ECG, and consequently, our main objective
was to evaluate and characterize the HRV spectrum in a broad
population of children with SAHS. To this effect, we delineated
two specific objectives for this study: (i) identification of putative
novel frequency bands, taking into account SAHS severity groups
and subject-specific considerations, and (ii) comparison of their
diagnostic ability against the classic HRV spectral bands.

METHODS
Subjects and signals under study
This work involved 1738 pediatric subjects aged between 0 and 13
years. Two large cohorts were included: a database from the
University of Chicago (UofC),34,35 which includes 981 children
referred to the Pediatric Sleep Unit at Comer Children’s Hospital of
the UofC (Chicago, IL, USA) suspected of suffering from SAHS; and
a second cohort composed of 757 children from the dataset of the
multicenter Childhood Adenotonsillectomy Trial (CHAT)
database.36,37 UofC database was established as the training set,
while the CHAT database served as the test set.
The informed consent of all children caretakers from the UofC

sample were obtained, and the Ethics Committee of the Comer
Children’s Hospital of the University of Chicago approved the
protocol (#11-0268-AM017, #09-115-B-AM031, and #IRB14–1241).
Diagnosis was reached using a digital PSG system (Polysmith,
Nihon Kohden America INC., Irvine, CA, USA). ECG was recorded at
sample frequencies of 200 or 500 Hz.
For the CHAT sample, details corresponding to entire protocol

are available in the supplementary material of ref. 37 Specifically, a
total of 779 nocturnal PSGs of children aged between 5 and 10
years were included. ECG signals were acquired at sampling
frequencies of 50, 200, 250, 256, or 512 Hz. Finally, 757 subjects
were used from this dataset since 22 were excluded after applying
the signal pre-processing protocol explained below.
All the subjects included in this study were diagnosed by

pediatric sleep specialists from the different centers, and their
sleep studies were scored in accordance with the American
Academy of Sleep Medicine (AASM) rules.38 The AHI was extracted
from the nocturnal PSGs and used to establish SAHS severity.
Based on previous studies,35,39–42 three typical AHI thresholds were
selected (1, 5, and 10 e/h) for the division into four severity groups:
the groups no-SAHS (AHI < 1 e/h), mild SAHS (1 ≤ AHI < 5 e/h),

moderate SAHS (5 ≤ AHI < 10 e/h), and severe SAHS (AHI ≥ 10 e/h).
Table 1 shows the clinical and demographic data of the population
considered.
The ECG signals from both databases were equally pre-

processed. First, the 15 initial and final minutes from every signal
were removed to avoid early and late artifact periods. Then all
recordings lasting <3 h were excluded. Afterwards, the HRV was
extracted following an algorithm based on the Hilbert transform
proposed by Benítez et al.43 The first stage of this algorithm
consists in computing the first-order derivative after baseline
correction of the ECG.43 The Hilbert transform is subsequently
computed for this derivative to locate regions of high
probability of containing R peaks around true R peaks. Later, a
search for actual R peak positions is conducted by establishing a
threshold derived from the root mean square of the Hilbert
transform for each region.43 Once the R peaks are detected, the
R–R intervals conforming HRV signals are easily calculated.7

Those beats that did not meet the following criteria were
considered as physiologically impossible and removed:11 (i) 0.33
s < R–R interval < 1.5 s and (ii) difference to the previous R–R
interval >0.66 s.
Finally, the HRV signals were resampled to a constant rate in

order to obtain equally spaced time samples and allow their
analysis in the frequency domain. This rate of 3.41 Hz10,11 was
chosen to evaluate 5-min epochs as a trade-off between using a
power of two window-length (210 samples) with fast Fourier
transform (FFT) and not adding unnecessary estimated data. Five-
min epochs were chosen as it is the maximum length where
stationarity can be assumed, in order to compute spectral
analysis.11

Determination of spectral bands of interest
Welch’s periodogram was applied to estimate the power spectral
density (PSD) of the HRV.44 A Hamming Window of 210 (50%
overlap) and a FFT of 211 points were used. Then a normalization
was applied to PSDs (PSDn) by dividing the amplitude values at
each frequency by the corresponding total spectral power. This
normalization is intended to minimize the differences due to
individual conditions other than SAHS.45 The bands of interest
were defined based on the PSDns from the training group.
Due to the considerations mentioned in the first section, we

defined the spectral bands of interest by combining two different
analyses depending on the frequency range: in 0–0.15 Hz, which
should not be influenced by age, and in 0.15–0.4 Hz, where an
adaptive analysis was adopted.
The adaptive analysis in the HF range was based on previous

studies of Milagro et al.31,32 Similar to those studies, we chose a

Table 1. Clinical and demographic data from children included in
the study.

All Training
group (UofC)

Test
group (CHAT)

Subjects (n) 1738 981 757

Age (years) 6.4 [3.3] 6.0 [6.0] 7.0 [2.4]

Males (n) 962 (55.35%) 602 (61.37%) 360 (47.95%)

BMI (kg/m2) 17.63 [5.37] 18.02 [5.86] 17.28 [4.64]

AHI (e/h) 2.23 [5.27] 3.8 [7.76] 1.46 [2.07]

AHI ≥ 1 (e/h) 1309 (75.31%) 808 (82.36%) 501 (66.18%)

AHI ≥ 5 (e/h) 519 (29.86%) 407 (41.49%) 112 (14.80%)

AHI ≥ 10 (e/h) 298 (17.15%) 229 (23.34%) 69 (9.11%)

Data are shown as median [interquartile range] or n (percentage).
UofC University of Chicago, CHAT Childhood Adenotonsillectomy Trial,
BMI Body Mass Index, AHI apnea–hypopnea index.
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0.15-Hz adaptive range centered in the individual respiratory peak
frequency. However, rather than obtaining this central frequency
from the impedance pneumography signal, we approximated the
individual peak position as the frequency where the highest PSD
value is found in the HF range. As it was previously reported, this
approximation is an accurate estimation of the respiratory peak.30

Thereby, we obtained an adaptive bandwidth of 0.15 Hz for each
subject, formed by 91 samples extracted from the PSD of HF.
Once we defined the adaptive band for each individual, the

selection of bands of interest in both the range 0–0.15 Hz and the
adaptive range was based on statistical differences between
PSDns from the training set severity groups. We computed the
non-parametric Mann–Whitney U test for each two severity
groups comparing frequency by frequency (in the band of
0–0.15 Hz) or sample by sample (in the adaptive one) the

amplitude values from the PSDns. Therefore, six statistical tests
were computed. After applying the Bonferroni correction, we
selected p value < 0.01 as the significance level and established as
bands of interest those ranges where at least two of the tests
yielded statistical differences.
Figures 1a and 2a show the averaged PSDns of the four SAHS

groups in the 0–0.15 Hz and the adaptive band, respectively. Some
differences between groups can be appreciated, with shaded
areas as the ranges where statistical differences were found. Fig-
ures 1b and 2b show the p values reached. According to this
methodology, the bands of interest selected in the range 0–0.15
Hz were BW1 [0.001–0.005] Hz and BW2 [0.028–0.074] Hz.
Correspondingly, the adaptive bands selected in the adaptive
range were ABW1 [samples 10–18], ABW2 [samples 24–26], and
ABW3 [samples 34–55].
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Fig. 1 PSDns analysis in the range 0-0.15 Hz. a Averaged PSDns in the 0–0.15 Hz band in the training set for the four severity groups.
b p value for each frequency in each comparison between SAHS severity groups after Bonferroni correction in the training group for the range
0–0.15 Hz. Gray-shaded areas represent those ranges where statistical differences were found.
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Feature extraction: relative power (RP)
The sum of PSDn values in a given frequency range is known as
RP. In HRV signals, spectral powers from VLF, LF, and HF bands
have been commonly assessed.7,26 LF band has been related
to both sympathetic and parasympathetic tone.7 The HF band
is strongly related to the respiratory rhythm, as well as with
the parasympathetic tone.7,31,32 Physiological interpretation of
VLF band is unclear, and it has been associated with sympathetic
tone and thermoregulatory effects in long-term recordings.7,26

The LF/HF ratio is another common explored measure and
used as a reflection of the balance between sympathetic and
parasympathetic tones.7,26 Because these parameters have been
widely assessed in the pediatric SAHS context,14–25 we have
chosen RP as the approach to characterize the activity in all the
frequency bands considered in this study. Thus we have

computed RP of the three classical frequency bands (RPVLF, RPLF,
RPHF), the five bands of interest (RPBW1, RPBW2, RPABW1, RPABW2,
RPABW3), and the LF/HF ratio.

Assessment of the diagnostic ability of the HRV spectrum
In order to compare the diagnostic ability of the new frequency
bands of interest with the classical ones, we first evaluated the
individual diagnostic performance of each parameter extracted
from the HRV spectrum. This was achieved by using optimum cut-
off points from the receiver operating characteristic (ROC) curve in
the training set. Then thresholds of 1, 5, and 10 e/h were selected,
and binary classification was performed.
The joint diagnostic performance of the parameters was

evaluated by constructing two models. On the one hand, a model
containing the RPs from the five bands of interest was considered.
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On the other hand, a model with the three classic RPs and the LF/
HF ratio was assessed. Then two classifiers based on linear
discriminant analysis (LDA) were trained in each binary classifica-
tion for the three severity thresholds used in this study, and the
diagnostic performance in the test set was obtained. The LDA
classifier was selected due to its simplicity and its proved utility in
the SAHS context.46,47 LDA is a supervised learning algorithm that
separates the input features space into decision regions, defining
linear decision boundaries.47 A discriminant score yj (x) is
computed for each class in accordance with ref. 46:

yj xð Þ ¼ μTj
X�1

x � 1
2
μTj
X�1

μj þ ln PðCjÞ; (1)

where Σ is the covariance matrix and μj is the mean vector for class
Cj and P(Cj) its corresponding prior probability, i.e., the proportion
of input feature vectors (xi) belonging to class Cj. After computing
each discriminant score, the class with the higher yj is assigned to
the input vector.

Statistical analysis
Features considered in this study did not fit either normality or
homoscedasticity tests. For this reason, the non-parametric
Kruskal–Wallis test was applied to assess statistically significant
differences (p value <0.01 after Bonferroni correction) between RPs
from the SAHS severity groups in both datasets. The joint and
individual diagnostic performances were evaluated in terms of
sensitivity (Se, proportion of subjects with SAHS correctly diag-
nosed), specificity (Sp, proportion of subjects without SAHS correctly
diagnosed), and accuracy (Acc, proportion of subjects correctly
diagnosed). We also evaluated the area under ROC curve (AUC). All
these diagnostic evaluations were obtained in the test set.
Furthermore, we conducted a correlation analysis to investigate

possible relationships between RPs and several polysomnographic

indices related to SAHS, sleep quality, and structure. Indices
related to SAHS were total AHI, obstructive AHI (OAHI), obstructive
apnea index (OAI), and oxygen desaturation index (ODI). On the
other hand, indices related to sleep quality and structure were the
wake after sleep onset (WASO); the number of awakenings during
total sleep time (#Awakenings); percentage of total sleep time
spent in N1 (%N1), N2 (%N2), N3 (%N3), and REM (%REM) stages;
and total arousal index (TAI, arousals per hour of sleep).
Spearman’s partial correlation coefficient (ρS) was applied to
control for the influence of age in the relationships between RPs
and these polysomnographic indices. In order to validate the
usefulness of our new bands established on the training set,
correlations were evaluated in the test set.

RESULTS
Relative powers
Table 2 shows the RPs extracted in each frequency band for each
severity group (median [interquartile range]), together with the p
values obtained using the Kruskal–Wallis test in both the training
and the test set. RPBW2, RPLF, and LF/HF showed clear increases at
higher SAHS severities, with RPBW2 and RPLF showing p values
<10–4 after Bonferroni correction (denoted as p value ≪ 0.01) in
both sets. RPBW1 showed a decrease with SAHS in the two sets, as
did RPABW2, RPABW3, and RPHF but only in the training set for these
three measures. VLF was the only band that did not show
statistically significant differences in any of the two sets evaluated.

Correlation analysis in the test set
Correlation results are shown in Table 3. Spearman’s partial
correlation coefficient (ρS) is represented for each RP and variable,
along with the corresponding p value. No statistically significant
correlations in RPABW1 and RPABW2 were obtained with any of the

Table 2. Relative power values (median [interquartile range]) in the training and test sets for the four severity groups.

Feature No SAHS Mild SAHS Moderate SAHS Severe SAHS p value

Training set

RPVLF 0.370 [0.174] 0.359 [0.163] 0.381 [0.179] 0.371 [0.164] 0.675

RPLF 0.225 [0.060] 0.224 [0.075] 0.235 [0.081] 0.244 [0.090] ≪0.01

RPHF 0.317 [0.179] 0.340 [0.195] 0.300 [0.218] 0.275 [0.213] <0.01

LF/HF 0.706 [0.510] 0.697 [0.594] 0.814 [0.791] 0.892 [0.985] ≪0.01

RPBW1 0.083 [0.055] 0.082 [0.050] 0.083 [0.047] 0.071 [0.049] <0.01

RPBW2 0.169 [0.054] 0.175 [0.068] 0.185 [0.086] 0.213 [0.107] ≪0.01

RPABW1 0.017 [0.010] 0.016 [0.009] 0.015 [0.007] 0.017 [0.010] <0.01

RPABW2 0.008 [0.005] 0.007 [0.005] 0.006 [0.004] 0.005 [0.005] <0.01

RPABW3 0.119 [0.110] 0.121 [0.121] 0.110 [0.115] 0.087 [0.098] ≪0.01

Test set

RPVLF 0.337 [0.140] 0.332 [0.155] 0.282 [0.149] 0.342 [0.186] 0.200

RPLF 0.218 [0.060] 0.227 [0.063] 0.222 [0.090] 0.259 [0.110] ≪0.01

RPHF 0.368 [0.167] 0.363 [0.184] 0.388 [0.198] 0.307 [0.217] 0.015

LF/HF 0.610 [0.407] 0.649 [0.462] 0.597 [0.539] 0.818 [0.886] <0.01

RPBW1 0.081 [0.044] 0.078 [0.039] 0.063 [0.045] 0.061 [0.043] <0.01

RPBW2 0.148 [0.055] 0.161 [0.062] 0.165 [0.078] 0.209 [0.113] ≪0.01

RPABW1 0.018 [0.009] 0.018 [0.009] 0.018 [0.007] 0.018 [0.010] 0.880

RPABW2 0.008 [0.005] 0.008 [0.004] 0.009 [0.005] 0.007 [0.006] 0.421

RPABW3 0.132 [0.108] 0.123 [0.107] 0.134 [0.143] 0.103 [0.093] 0.004a

RP Relative power, SAHS sleep apnea–hypopnea syndrome, VLF very low frequency, LF low frequency, HF high frequency.
p values < 10−4 after Bonferroni correction are represented as ≪0.01.
aNon-significant after Bonferroni correction.
p values statistically significant (<0.01 after Bonferroni correction) appears in bold.
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polysomnographic indices considered. Despite the generally low
|ρS| values reached, some statistically significant correlations
emerged in the other bands. RPBW1 showed positive ρS with
macro sleep disruption-related variables (#Awakenings and
WASO), while RPVLF showed association with #Awakenings in a
lower degree than RPBW1. RPBW2 reached the highest absolute
correlations with all the SAHS-related indices, as well as with TAI.
RPABW3 was the only adaptive band that reached statistically
significant correlations, showing negative ρS with ODI, WASO, and
TAI. Similar to RPABW3, RPHF presented significant negative
correlations with ODI and WASO but showed lower values of
|ρS|. Indices related with sleep stages did not show any statistically
significant correlations with the RPs evaluated.

Diagnostic ability assessments
Table 4 shows the results achieved by each individual RP as well as
the two LDA models. The individual results showed that the
highest AUC was always obtained with RPBW2 in the three SAHS
severity thresholds considered, together with the highest accura-
cies and specificities in 5 and 10 e/h subgroups. The only classic
band that improved any result of the bands of interest was RPVLF
(sensitivity in 1 e/h). It is noteworthy that the diagnostic
performance obtained in HF was always outperformed by at least

one of the three adaptive bands of interest, except for specificity
in the lowest threshold.
Finally, when LDA models were examined, the highest

diagnostic performance was generally obtained with the models
formed by RPs in our five bands of interest. Only specificity in 1 e/
h threshold was higher with classic band model, but sensitivity/
specificity pair was strongly unbalanced.

DISCUSSION
In this study, new HRV spectral bands of interest were identified
and evaluated to gain insight into cardiovascular dynamics in the
presence of pediatric SAHS. These bands were significantly
correlated with respiratory events, as well as with micro and
macro sleep disruptions. Our newly identified bands also showed
a higher diagnostic yield than the widely analyzed classical
spectral bands, suggesting that new spectral bands are more
specific when HRV is analyzed in the pediatric SAHS context.

Physiological interpretation and usefulness of the new spectral
bands of interest
BW1 (0.001–0.005 Hz) is a narrower band within VLF.26 The
physiological meaning of VLF band is under discussion,11 and

Table 3. Results of the partial correlation assessments between relative powers and the polysomnographic indices in the test set.

Classic bands

PSG index RPVLF RPLF RPHF LF/HF

ρS p value ρS p value ρS p value ρS p value

AHI −0.031 0.391 0.150 <0.01 −0.075 0.040 0.118 0.001a

OAHI −0.073 0.043 0.088 0.015 −0.012 0.737 0.046 0.207

OAI −0.035 0.333 0.067 0.066 −0.031 0.392 0.052 0.154

ODI 0.039 0.289 0.194 ≪0.01 −0.161 ≪0.01 0.195 ≪0.01

#Awakenings 0.133 <0.01 0.036 0.324 −0.115 0.014 0.086 0.018

WASO 0.071 0.049 0.112 0.002a −0.146 <0.01 0.145 <0.01

%N1 0.003 0.930 0.063 0.084 −0.040 0.266 0.058 0.111

%N2 −0.085 0.019 −0.076 0.038 0.098 0.007a −0.112 0.002a

%N3 0.068 0.060 0.074 0.043 −0.089 0.014 0.101 0.005a

%REM 0.041 0.262 −0.083 0.022 0.030 0.404 −0.047 0.197

TAI 0.031 0.389 0.128 <0.01 −0.098 0.007a 0.126 <0.01

Bands of interest

PSG index RPBW1 RPBW2 RPABW1 RPABW2 RPABW3

ρS p value ρS p value ρS p value ρS p value ρS p value

AHI −0.132 <0.01 0.233 ≪0.01 −0.010 0.786 −0.049 0.179 −0.101 0.005a

OAHI −0.157 <0.01 0.164 ≪0.01 −0.002 0.962 −0.021 0.555 −0.033 0.368

OAI −0.096 0.008a 0.149 <0.01 −0.010 0.774 −0.031 0.395 −0.049 0.180

ODI −0.033 0.358 0.220 ≪0.01 −0.009 0.809 −0.100 0.006a −0.192 ≪0.01

#Awakenings 0.174 ≪0.01 0.069 0.059 −0.036 0.329 −0.055 0.134 −0.096 0.008a

WASO 0.186 ≪0.01 0.054 0.141 0.024 0.514 −0.046 0.210 −0.195 ≪0.01

%N1 0.001 0.969 0.087 0.017 0.020 0.584 −0.005 0.887 −0.063 0.083

%N2 −0.073 0.045 −0.092 0.011 0.009 0.798 0.071 0.050 0.083 0.023

%N3 0.058 0.111 0.052 0.155 −0.028 0.443 −0.092 0.011 −0.066 0.069

%REM 0.048 0.187 −0.049 0.175 −0.004 0.913 0.019 0.594 0.041 0.262

TAI −0.059 0.105 0.220 ≪0.01 −0.025 0.492 −0.043 0.237 −0.123 <0.01

PSG polysomnographic, RP relative power, VLF very low frequency, LF low frequency, HF high frequency, AHI apnea–hypopnea index, OAHI obstructive AHI, OAI
obstructive apnea index, ODI oxygen desaturation index, WASO wake after sleep onset, %N1 time spent in N1 stage, %N2 time spent in N2 stage, %N3 time
spent in N3 stage, %REM time spent in REM stage, TAI total arousals index.
aNon-significant after Bonferroni correction.
Values where statistically significant correlations were obtained (p value < 0.01 after Bonferroni correction) appears in bold.
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previous studies analyzing this band did not find differences
across the pediatric SAHS severity groups.22,23 In this study, RPVLF
was the only parameter that did not show significant differences
in any of the sets evaluated. However, RPBW1 differed between
groups in both the training and test sets, as well as showed
statistically significant ρS with the number of awakenings and
WASO in the test set. These findings suggest that, contrary to the
whole VLF band, both the occurrence of the awakenings and the
time spend awake is embedded in BW1. As one of the SAHS
consequences is sleep fragmentation, this observation may drive
the improvement in the individual diagnostic ability of RPBW1

compared to RPVLF in terms of AUC.
BW2 (0.028–0.074 Hz) showed the strongest correlations with all

SAHS respiratory indices (AHI, OAHI, OAI, and ODI) and TAI, the
latter being composed of many respiratory-related arousals
induced by the disease.48 Furthermore, BW2 reached the highest
individual diagnostic performance, clearly improving the accuracy
and AUC of the remaining new and classic bands in the 5 and 10
e/h thresholds. BW2 range (0.028–0.074 Hz) comprises part of VLF
and LF, which agrees with previous results reported for adults.10

Moreover, when analyzing overnight airflow in adults, prior
studies found a similar band of interest (≈0.025–0.050 Hz).49,50

These similarities in cardiac and breathing signals may be
explained by the increment in the cardio-respiratory coordination
found when SAHS is present.28 Similarly, the slight differences in
the bandwidth may be explained by lower duration of cardiac
events vs. respiratory events, as well as by the different annotation
rules for apneic events in children and adults.38 Such rules will
score a pediatric apneic event lasting at least 2 respiratory cycles,
usually corresponding to 6 s. Thus the BW2 frequency range,
which reflects periodicities between 13 and 35 s, is also consistent

with these annotations, while suggesting a duration for cardiac-
related events. According to the above-mentioned considerations,
there are robust indications that the typical SAHS-related
bradycardia/tachycardia patterns are reflected in BW2, underlining
the potential usefulness of this HRV band in the pediatric SAHS
context.
As reflected in Fig. 2, the main differences between SAHS

severity groups in the adaptive respiratory band coincide with
ABW3 (samples 34–55), with averaged PSD values decreasing as
SAHS worsens, and RPABW3 showing statistically significant
differences in the training set. Moreover, ABW3 also showed
statistically significant negative correlations with ODI, WASO, and
TAI, which were higher than the corresponding for RPHF. Thus the
higher the power in ABW3, the lower the values will be found for
oxyhemoglobin desaturations, awake time, and arousals. This
finding may be indicative that normal sleep respiration activity
decreases as awakening or micro awakening periods arise, which
are often driven by inadequate gas exchange and, eventually,
blood oxygen deficits.1,38 This would explain the increased AUC
showed by ABW3 in the three AHI thresholds compared to HF and
further support the adaptive analysis rather than the fixed
HF band.
ABW1 and ABW2 achieved similar diagnostic performance to

HF, except in the higher severity threshold, where the diagnostic
ability was markedly lower. Moreover, these two bands of interest
did not show any significant correlation with the PSG indices. To
investigate whether they are really useful, a final analysis was
conducted. The diagnostic ability of the LDA models formed by
RPs of the bands of interest with and without considering ABW1
and ABW2 is shown in Table 5. It can be appreciated that there
was a slight decrease in AUC for 1 and 5 e/h thresholds when both

Table 5. Diagnostic performance in the test set for both linear discriminant analysis models formed by bands of interest with and without RPABW1

and RPABW2 in terms of sensitivity (Se %), specificity (Sp %), accuracy (Acc %), and AUC.

LDA model AHI threshold= 1 e/h AHI threshold= 5 e/h AHI threshold= 10 e/h

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC

With both bands 42.5 72.3 52.6 0.592 50.0 80.9 76.4 0.688 63.8 84.7 82.8 0.796

Without both bands 37.7 80.1 52.0 0.597 48.2 80.8 76.0 0.696 62.8 84.3 82.3 0.774

RP relative power, AHI apnea–hypopnea index.

Table 4. Diagnostic performance in the test set for each relative power in each frequency band, as well as for both linear discriminant analysis
models in terms of sensitivity (Se %), specificity (Sp %), accuracy (Acc %), and AUC.

Feature/model AHI threshold= 1 e/h AHI threshold= 5 e/h AHI threshold= 10 e/h

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC

RPVLF 68.9 31.6 56.3 0.518 33.0 65.0 60.2 0.456 40.6 64.2 62.1 0.495

RPLF 43.5 62.9 50.1 0.557 52.7 58.4 57.6 0.590 59.4 58.4 58.5 0.666

RPHF 35.5 71.9 47.8 0.523 39.3 68.1 63.8 0.540 43.5 76.7 73.7 0.605

LF/HF 37.7 70.3 48.7 0.540 45.5 66.8 63.7 0.567 49.3 70.8 68.8 0.643

RPBW1 66.3 45.3 59.2 0.559 65.2 54.0 55.6 0.621 69.6 52.3 53.9 0.624

RPBW2 32.7 78.1 48.1 0.591 45.5 82.0 76.6 0.670 58.0 78.2 76.4 0.751

RPABW1 52.7 49.2 51.5 0.516 41.1 59.4 56.7 0.504 55.1 39.0 40.4 0.489

RPABW2 49.1 55.1 51.1 0.526 36.6 69.8 64.9 0.524 44.9 47.8 47.6 0.451

RPABW3 45.5 56.6 49.3 0.532 44.6 64.0 61.2 0.571 49.3 64.0 62.6 0.628

LDA classic bands 25.7 81.3 44.5 0.559 46.4 72.2 68.4 0.633 50.7 75.3 73.1 0.685

LDA bands of interest 42.5 72.3 52.6 0.592 50.0 80.9 76.4 0.688 63.8 84.7 82.8 0.796

RP relative power, VLF very low frequency, LF low frequency, HF high frequency, LDA linear discriminant analysis, AHI apnea–hypopnea index.
The highest accuracy and AUC for each AHI threshold appears in bold.
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bands were included, with similar accuracies, suggesting that
these bands show no evidence of diagnostic utility. It also implies
that only a frequency range of ≈0.04 Hz around the adaptive
respiratory peak, which corresponds to the width of ABW3, would
be enough to analyze HF in SAHS cases.

Comparison with previous work
To the best of our knowledge, this is the first work searching for
specific HRV spectral bands of interest in the pediatric SAHS
context. Previous studies in the frequency domain only analyzed
the HRV classic frequency bands.14–25

The common finding among previous studies pointed to
increased LF activity14,21 and LF/HF ratio,14,17,20 as well as
decreased HF power16,17,19 as SAHS worsens. Adenotonsillectomy,
the common treatment for SAHS in children, reversed these
trends.18 This agrees with the results shown in Table 2. It seems
that intermittent hypoxia and episodic arousals, which are present
in children with SAHS and accompanied by increases in
sympathetic outflow (reflected in the increased RPLF) underlie
the autonomic changes that persist even beyond sleep period.
The effect of SAHS in the ANS was analyzed in previous
studies.51,52 Somers et al. showed that, in young healthy adults,
intermittent hypoxia during sleep derived in heightened sympa-
thetic activation, even when the stimulus was removed. In the
same way, subtle changes in autonomic reactivity are detectable
during arousals in healthy children as well as in children with SAHS
during wakefulness.53,54 All these evidences along with the results
shown in Table 2 supports previous findings that pediatric SAHS
leads to enhanced sympathetic activity, as well as decreased
parasympathetic activation, resulting in impaired cardiac auto-
nomic modulation. The absence of differences in RPVLF is also in
accordance with previous studies analyzing this band.22,23

On the other hand, previous studies originating from a single
research group23–25 conducted an automated classification of
pediatric subjects into SAHS or control groups. These studies
involving only 21 children derived HRV parameters from declines
in amplitude fluctuations of the photoplethysmographic oximetry
signal. Accuracies in the range 73.3–80.0%, together with
sensitivities between 62.5 and 87.5% and specificities between
71.4 and 85.7%, were reported. Despite the similar results
achieved in the present study, the different criteria used to assess
SAHS presence and severity makes further comparisons difficult.
Similarly, only a previous study conducted automated classifica-
tion while exclusively evaluating HRV signal in pediatric SAHS
context.15 However, unlike us, this study focused on classification
of each apneic event rather than each subject, such that their
findings and current results cannot be compared. Thus this is the
first study conducting automated classification of pediatric
subjects into severity SAHS groups employing HRV signals
exclusively.

Limitations and outlook
Despite the potential utility of our findings, we need to mention
some of the limitations of this study. First, our LDA model
performance is not yet sufficient for widespread diagnostic use,
being outperformed by the results derived from the study of other
polysomnographic signals such as blood oxygen saturation or
airflow, which have a direct acquisition.34,41 However, we need to
remark that the aim of this study was not at optimizing
classification performance but rather aimed to characterize new
SAHS-specific spectral bands and compare their diagnostic ability
against the classic HRV bands. Thus this is a first step that justifies
future explorations of more complex predictive models with the
aim to further improve the diagnostic usefulness and character-
ization of these novel bands. Finally, despite the robust associa-
tions found for BW1, BW2, and ABW3 relative to standard PSG
indices, both ABW1 and ABW2 need further investigation to clarify
their significance in pediatric SAHS.

CONCLUSIONS
This is the first study whereby specific HRV spectral bands of
interest in pediatric SAHS have been identified and characterized.
We have defined three new spectral bands that show significant
associations with SAHS disease severity: BW1 (0.001–0.005 Hz),
related to macro sleep disruptions; BW2 (0.028–0.074 Hz), related
to the duration of apneic events; and ABW3, an adaptive band
within the respiratory range, related to oxyhemoglobin desatura-
tions and sleep disruption. Higher individual and collective
diagnostic ability were achieved by the RPs of the new bands
compared with the classical RPs for SAHS severity thresholds of 1,
5, and 10 e/h. An LDA model that incorporated five RPs from the
new spectral bands achieved the highest diagnostic performance
(82.8% Acc, 0.796 AUC for 10 e/h threshold). Hence, our results
suggest that the new HRV bands provide more specific informa-
tion on pediatric SAHS and that such novel information could be
used to develop advanced automated SAHS detection methodol-
ogies. Thus future studies incorporating these novel spectral
bands should be pursued to further establish their clinical
significance and clinical applications.
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