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Abstract: This study focused on the automatic analysis of the airflow signal (AF) to aid in the
diagnosis of pediatric obstructive sleep apnea (OSA). Thus, our aims were: (i) to characterize the
overnight AF characteristics using discrete wavelet transform (DWT) approach, (ii) to evaluate its
diagnostic utility, and (iii) to assess its complementarity with the 3% oxygen desaturation index
(ODI3). In order to reach these goals, we analyzed 946 overnight pediatric AF recordings in three
stages: (i) DWT-derived feature extraction, (ii) feature selection, and (iii) pattern recognition. AF
recordings from OSA patients showed both lower detail coefficients and decreased activity associated
with the normal breathing band. Wavelet analysis also revealed that OSA disturbed the frequency and
energy distribution of the AF signal, increasing its irregularity. Moreover, the information obtained
from the wavelet analysis was complementary to ODI3. In this regard, the combination of both
wavelet information and ODI3 achieved high diagnostic accuracy using the common OSA-positive
cutoffs: 77.97%, 81.91%, and 90.99% (AdaBoost.M2), and 81.96%, 82.14%, and 90.69% (Bayesian
multi-layer perceptron) for 1, 5, and 10 apneic events/hour, respectively. Hence, these findings
suggest that DWT properly characterizes OSA-related severity as embedded in nocturnal AF, and
could simplify the diagnosis of pediatric OSA.

Keywords: AdaBoost.M2; Bayesian multi-layer perceptron; airflow; children; obstructive sleep apnea;
wavelet analysis

1. Introduction

Pediatric obstructive sleep apnea (OSA) is a major sleep-related breathing disorder,
affecting a large number of children (5%) and increasing the risk of negative health conse-
quences among those affected [1,2]. Several studies have reported that the characteristic
nocturnal respiratory disruptions manifesting as either cessation or reductions in airflow
lead to inadequate gas exchange and fragmented sleep that affects not only other physio-
logical processes, but also cognitive development [2–4]. Consequently, the morbidities can
worsen and become irreversible if OSA is not timely treated [5].

Despite the potential seriousness of OSA-related complications, it remains an un-
derdiagnosed disorder due to relative unawareness of both parents and primary care
physicians and the inherent difficulties in accessing the diagnostic test [6,7]. In this regard,
the gold standard approach for diagnosing OSA is overnight polysomnography (PSG),
which is technically complex, labor intensive, expensive, potentially distressing to the
child and uncomfortable to the parent, and relatively unavailable [6,7]. These drawbacks
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have led to multiple efforts focused around development of alternative methods that sim-
plify OSA diagnosis in children. Typically, these studies centered around the analysis of
a reduced number of physiological signals, such as photoplethysmography (PPG), elec-
trocardiogram (ECG), airflow (AF), or blood oxygen saturation (SpO2), using statistical,
nonlinear and/or spectral techniques [8–14]. However, most of these analyses are a direct
extension of techniques previously used in studies of OSA in adults, and have not achieved
the same efficacy metrics so far [8–14]. Major reasons for such differences reside in the
fact that the density of respiratory events is remarkably lower in children, and the criteria
to determine the severity categories are more conservative in children [1,5,15], thereby
presenting greater difficulty for automatic analyses. Consequently, different approaches
are required in order to detect and characterize the disturbances that the presence of OSA
entails during physiological recordings in children.

In this study, we propose the analysis of oronasal airflow to enable the diagnosis of
pediatric OSA, in light of the fact that respiratory events are defined based on total/partial
reduction (apneas/hypopneas) of airflow [15]. Overnight AF tracings reflect the respiratory
activity of children while asleep, including the cessations/reductions of AF in the context
of OSA [15]. Unsurprisingly, AF analytics have already shown their utility in simplifying
careening and potentially the diagnosis of pediatric OSA [11,12,16,17]. In addition, apneic
events are usually, albeit not always accompanied by blood oxygen desaturations [15].
Consequently, conventional oximetry indices, such as the oxygen desaturation index
≥3% (ODI3), are typically used as a suboptimal surrogate of PSG when the latter is
unavailable [18,19]. However, these indices routinely underestimate the severity of the
disease [20,21], thus requiring complementary approaches.

AF is a non-stationary biomedical signal, that is, its properties change and evolve over
time [17]. Thus, we propose implementation of wavelet analysis of AF. Unlike the methods
based on Fourier transform, the wavelet transform (WT) does not make assumptions about
the stationarity of the time series [22,23]. Hence, the WT decomposition is a promising
method for the analysis and characterization of AF signal, which overcomes the limitations
of conventional spectral analyses. In addition, WT analysis is capable of providing optimal
time-frequency resolution (high time and frequency resolution at high and low frequencies,
respectively), as well as high frequency resolution in long-lasting recordings [22,24]. It
should be noted that a high frequency resolution at low frequencies is of utmost importance
for the current study, since previous research has reported the existence of relevant OSA-
related information at low frequencies of the AF signal [12,16]. Moreover, this property
would allow us to obtain detailed information about a certain frequency range, while
preserving the temporal information related to apneic events [25]. This methodology has
been used successfully to characterize other signals involved in OSA diagnosis in adults
and children, such as the electroencephalogram [26], ECG [27], SpO2 [25], and thoracic or
abdominal effort [28,29]. However, WT analysis will be to characterize nocturnal AF in
the context of pediatric OSA for the first time. Therefore, our starting hypothesis is that
WT can provide useful information about the AF behavior in the presence of apneic or
hypopneic events. Accordingly, the aims of this study were: (i) to characterize nocturnal
AF by means of WT, (ii) to assess its utility to diagnose OSA in children, and (iii) to assess
its complementarity with ODI3.

2. Database

Children (946; 584 males and 362 females), clinically suspected of suffering from
pediatric OSA, spent one night in the specialized sleep laboratory of the Comer Chil-
dren’s Hospital of the University of Chicago (Chicago, IL, USA) to undergo nocturnal
polysomnography. The children’s caretakers were informed and agreed to participate in
the study. The protocol was approved by the Ethics Committee of the University of Chicago
(approval numbers: 11-0268-AM017, 09-115-B-AM031, and IRB14-1241).

During the PSG, up to 32 physiological signals were recorded, including AF. Following
the guidelines of the American Academy of Sleep Medicine (AASM) [15], sleep medicine
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specialists scored the apnea and hypopnea events from these recordings to calculate the
apnea-hypopnea index (AHI: number of apneic and hypopneic events per hour of sleep).
Each child was then classified into one of the following four severity categories: AHI ∈
[0,1) events/hour (e/h) as no-OSA, AHI ∈ [1,5) e/h as mild OSA, AHI ∈ [5,10) e/h as
moderate OSA, and AHI ∈ [10,∞) e/h as severe OSA [1,5].

The main characteristics of the children involved in the study are presented in Table 1.
Out of the 946 children, 570 (60%) were randomly selected into the training group and 376
(40%) into the test group. Statistically significant differences (p-value < 0.01) between the
training and test groups were evaluated using Fisher’s exact test for categorical variables
and the non-parametric Mann-Whitney U test for continuous variables. No significant
differences were found in any of the evaluated clinical or demographic variables.

Table 1. Demographic and clinical characteristics of the different subject groups included during the
training and testing phases of the study.

Characteristic All Training Group Test Group

#Subjects 946 570 (60%) 376 (40%)
Age (years) 6 [6] 6 [5] 6 [6]

#Males 584 (61.7%) 339 (59.5%) 245 (65.2%)
BMI (kg/m2) 17.9 [6.2] 17.7 [6.7] 18.1 [6.0]

AHI (e/h) 3.8 [7.8] 4.2 [8.3] 3.3 [6.4]
#No-OSA 163 (17.2%) 91 (16.0%) 72 (19.1%)

#Mild OSA 386 (40.8%) 223 (39.1%) 163 (43.4%)
#Moderate OSA 172 (18.2%) 111 (19.5%) 61 (16.2%)

#Severe OSA 225 (23.8%) 145 (25.4%) 80 (21.3%)
The characteristics are presented as median [interquartile range] or number (%). BMI = body mass index, AHI =
apnea-hypopnea index, OSA = obstructive sleep apnea.

AF and SpO2 recordings were obtained from the PSG recordings by means of a
thermistor and a pulse oximeter, respectively. According to AASM, the AF and SpO2
recordings used in our study were resampled at the recommended frequency: 100 Hz
for AF and 25 Hz for SpO2 [15]. Both signals were subjected to a preprocessing stage in
order to automatically remove possible artifacts. This stage was conducted following the
artifact removal methods proposed in previous studies [12,17]. Signals whose duration was
less than 3 h after artifact removal were excluded from our study [17,30]. Moreover, AF
signals were normalized to minimize the inter-individual differences related to particular
physiological characteristics other than OSA [31].

3. Methods

Figure 1 shows the scheme of the stages followed in this study: (i) feature extraction to
characterize AF by means of WT, as well as to compute ODI3, (ii) feature selection using the
fast correlation-based filter (FCBF) to obtain an optimal feature subset, and (iii) application
of machine-learning approaches to carry out multiclass classification and regression. The
multiclass classification was performed to determine the OSA severity degree through
AdaBoost.M2 with decision trees as base classifier. Regarding to the regression process,
it was carried out to estimate the AHI of each child by means of multi-layer perceptron
neural network with a Bayesian approach (BY-MLP). In this sense, recent studies have
shown the usefulness of these selection and machine-learning methods in the context of
pediatric OSA diagnosis [12,17].
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Figure 1. Scheme of the proposed methodology.

3.1. Feature Extraction
3.1.1. Wavelet Features

WT allows to conduct a multiresolution analysis of non-stationary signals, i.e., it
allows to analyze a time series in different frequency ranges with variable resolution [24].
In our study, the analysis is performed using the discrete wavelet transform (DWT) to
deal with the redundancy and computational complexity issues of the continuous ap-
proach [23,24]. Moreover, DWT has been successfully used in previous studies aimed at
OSA detection [25,26,28,29]. As can be seen in Figure 2, multiresolution analysis with DWT
consists of performing N = log2(M) decomposition steps, where M is the size of the time
series x(n) [23,25]. At each step, the decomposition is conducted by using a scaling φj,n and
a wavelet function ψj,n, which are generated by scaling and translation of basis functions
and where j denotes the decomposition level [32]:

φj,k(n) = s−
j
2 ·φ

(
n− k·τ·sj

sj

)
= 2−

j
2 ·φ

(
2−j·n− k

)
, (1)

ψj,k(n) = s−
j
2 ·ψ

(
n− k·τ·sj

sj

)
= 2−

j
2 ·ψ

(
2−j·n− k

)
, (2)

where s = 2 and τ = 1 (dyadic sampling) are the scale and translation parameters, respec-
tively, j ∈ Z is the decomposition level, k ∈ Z is the coefficient position within each sub-band
of the decomposition, φ is the basis scaling function, and ψ is the basis wavelet function or
mother wavelet. The scaling and wavelet functions allow to characterize the approximation
and detail spaces at different resolutions, respectively. It cannot be affirmed that a generic
optimal wavelet function exists, since in each particular case there will be a mother wavelet
that better adapts to the signal under study.

In our work, Haar and Daubechies-5 wavelets have been evaluated due to their
previous suitability to the AF signal [33,34]. Figure 3 shows the mother wavelets Haar and
Daubechies-5, as well as a 10-min segment of AF signal. Haar is the simpler orthonormal
wavelet, which does not cause edge effect due to it uses a single vanishing moment and
a support width = 1 (Figure 3) [35,36]. It would avoid ignoring the relevant information
contained in these regions. Moreover, the stepped shape of the Haar wavelet would allow
to detect abrupt reductions of AF caused by apneic events. Regarding Daubechies-5, it uses
5 vanishing moments and a support width = 9 (Figure 3). When increasing the vanishing
moment and the support width, the time-frequency localization improves [37,38], but
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the edge effect also increases [36]. Hence, the Daubechies-5 wavelet would provide a
better localization while causing less edge effect than other higher order variants, such as
Daubechies-10 or Daubechies-20 [36]. In addition, its shape resembles an AF signal, which
would allow a better setting.Sensors 2021, 21, x FOR PEER REVIEW 5 of 19 
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Figure 2. (a) Wavelet decomposition where x(n) is the time series, g(n) are half-band high-pass
filters, h(n) are half-band low-pass filters, /2 are subsampling processes, and Dj and Aj are detail
and approximation signals of the decomposition level j, respectively. (b) Detailed signals at each
decomposition level of airflow signal.

In practice, the scaling (φ) and wavelet (ψ) functions are considered as half-band
low-pass h(n) and half-band high-pass g(n) filters, respectively, such as [24,32]:

g(n) = (−1)1−n·h(1− n). (3)
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Figure 3. Mother wavelets Haar and Daubechies-5, and a 10-min segment of AF signal.

Hence, as shown in Figure 2a, DWT can be implemented as a cascade of recursive
filters, each of them followed by a subsampling process by 2 (dyadic sampling) to reduce
the sampling frequency and increase the spectral resolution [24,29,32]. Thereby, the low
frequency band can be split again, thus generating new levels of decomposition. At each
decomposition level j, after the corresponding filter and subsampling, the approximation
Aj (low frequency) and the detail Dj (high frequency) signals are obtained [24,25,29]:

Aj[k] = ∑n Aj−1·h(2k− n), (4)

Dj[k] = ∑n Aj−1·g(2k− n), (5)

where A0 is the time series x(n). This decomposition process finishes when level j = N
is reached.

The AF signal was segmented into epochs of length 216 samples (≈10-min), as con-
ducted in previous studies [12,39]. Thus, DWT decomposition for each segment was carried
out at 16 levels (N = log2 (216)), using Haar and Daubechies-5 as mother wavelets [33,34].
An example of decomposition of AF segment by means of Daubechies-5 can be observed
in Figure 2b.

Our DWT analysis mainly focused on D8 (0.1953–0.3906 Hz), which corresponds
to the normal breathing frequency band in sleeping children [16,40]. This choice let us
characterize the alterations caused by OSA in normal nocturnal respiration. Thereby, after
obtaining the detail coefficients of D8 from each of the 946 AF signals, the following features
were extracted to quantify the information contained in them [25]:

• Four statistical moments (M1D8–M4D8). Mean (M1D8), standard deviation (M2D8),
skewness (M3D8), and kurtosis (M4D8) are computed to measure central tendency,
dispersion, asymmetry, and peakedness of the distribution of the coefficients of D8 [25].

• Maximum and minimum (MaxD8 and MinD8). They are the highest (MaxD8) and the
lowest (MinD8) value of the coefficients of the detail signal D8. These features allow
to quantify the maximum and minimum amplitude reached in this decomposition
level [25].

• Energy (ED8). This feature measures the quadratic amplitude of the detail signal D8,
providing information about the activity produced in the resolution level associated
to the representative frequency band of the normal breathing [25,41]. It is computed
as the sum of the modulus of the detail coefficients squared [22,23]:

ED8 = ∑k|D8[k]|2, (6)

In addition to the D8-derived features, the wavelet entropy from all detail levels has
been obtained to also characterize the OSA global effects on the complete AF signal:
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• Wavelet entropy (WE). It is an extension of the well-known Shannon’s entropy. There-
fore, this feature allows quantifying the energy distribution changes generated in
the decomposition process, offering information about the underlying dynamical
behavior and the irregularity of the signal [22,25,41]:

WE = −∑N
j=1 pj· log

(
pj
)
, (7)

where pj is the normalized energy distribution at the decomposition level j:

pj =
EDj

∑N
j=1 EDj

. (8)

Due to the amplitude reductions of the AF signal produced by apneic events [15], as
well as the ability of the DWT to assign low coefficients to the flatter signal parts and high
coefficients to the steeper [42], it is expected to find higher coefficients in the signal D8
of the subjects without OSA. Consequently, and according to previous spectral analyses
of AF [16,43], higher values of M1D8, M2D8, MaxD8, and MinD8, as well as lower values
of M3D8 and M4D8, are expected in these subjects. In addition, it is also expected that
there will be greater activity in the normal breathing band in the absence of apneas and
hypopneas, i.e., that subjects without OSA have a higher ED8. Regarding WE, it has been
observed that apneic events introduce changes in time and frequency domains of AF
signal of children [11,12,16]. Thus, AF signals are expected to be more irregular (higher
values of WE) as OSA severity increases. Thereby, since DWT allows to obtain higher
frequency resolution at low frequencies, it is expected to provide a more detailed analysis
than classical spectral analysis.

3.1.2. Oximetry Index

ODI3 was obtained from the SpO2 signal in order to compare the AF information
with a common clinical index that usually acts as a surrogate of the full PSG, when the
latter is not available. The guideline followed to calculate ODI3 was established according
to the definition provided by Taha et al. [44]. Thus, the SpO2 reductions greater than or
equal to 3% and lasting at least 10 s were considered desaturation events. Finally, ODI3
was computed dividing the total number of desaturations presented in the SpO2 signal
by the recording time expressed in hours. Due to the blood oxygen desaturations are
closely related to the occurrence of apneic events [15], ODI3 is expected to be higher as
OSA severity increases.

3.2. Feature Selection

The fast correlation-based filter (FCBF) was used to obtain an optimal subset of rele-
vant and non-redundant features [45]. Some motivations for using this algorithm are that it
does not depend on subsequent analyzes and it reduces the complexity and dimensionality
of the predictive models [45,46]. Moreover, this method has been successfully applied in
the pediatric OSA context [12,13,17,25,47].

A bootstrapping procedure was conducted (1000 replicates) to obtain a stable and
optimal subset [46]. The average significance was used as selection threshold Ts [30]. It
was computed as the average number of times that all features were selected [30]. Hence,
the features selected a number of times ≥Ts constituted the optimal set of features that fed
the predictive models proposed in our study.

3.3. Machine-Learning Approaches
3.3.1. Multiclass Classification

In order to carry out a classification into 4-classes (no-OSA, mild, moderate, and severe
OSA), we used the adaptive boosting (AdaBoost.M2) ensemble-learning algorithm due to
previous success in classifying AF signals in the OSA context [12,48]. AdaBoost.M2 is based
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on iterative training of multiple ‘weak classifiers’ (also, base classifiers) of the same type,
so that each new one focuses on the data misclassified by its predecessors [49,50]. Thereby,
this method calls the base classification algorithm L times, giving it each time a different
weight distribution for the training. The same weight is initially assigned to all instances
and then it is updated in each iteration: more weight to wrongly classified instances and
less weight to those correctly classified [49,50]. This allows the algorithm to adapt to the
data, minimizing the expected error and focusing on correctly classifying the instances
with more weight [50]. The weight update also involves the use of the learning rate α, a
regularization parameter to deal with overfitting [48,50]. Finally, the weighted vote of all
the previously trained classifiers is computed, obtaining a more robust prediction of each
class [49,50].

In our study, decision trees were used as base classifiers, which is a common choice
when using ensemble-learning methods [49]. The optimal number of weak classifiers L, as
well as the learning rate α, require to be tuned. In this regard, both hyperparameters were
optimized by applying bootstrapping (1000 replicates) in the training group and using
0.632 bootstrap to estimate the Cohen’s kappa (kappa) for each L/α pair [12,48].

3.3.2. Regression

A regression process by means of multi-layer perceptron neural network with a
Bayesian approach (BY-MLP) was conducted to estimate AHI. BY-MLP has already shown
its utility in OSA diagnosis [17,51,52]. This method is based on a set of perceptrons
organized in layers, so that each perceptron is connected to all those of the next layer with
a certain weight [53]. In order to obtain a universal approximation, BY-MLP is typically
formed by 3 layers: (i) an input layer with NI perceptrons that receive the input patterns
and propagate them to all the perceptrons of the next layer, (ii) a hidden layer with NH
perceptrons that perform a non-linear processing of the received patterns and propagate it
to the next layer, and (iii) an output layer with NO perceptrons that process the information
received from the hidden layer and provide the response of the neural network [53]. The
learning process of the network involves adjusting the weights associated to the connections
between perceptrons. The technique applied to carry out this adjustment is the Bayesian
inference, which allows finding the optimal weights that minimize the error function [52].

In our study, NI is equal to the number of features selected in the previous stage, NH
is a parameter to be tuned, and NO is equal to one perceptron since the network purpose
is to estimate the AHI. As in Adaboost.M2, the value of NH was optimized by applying
bootstrapping (1000 replicates) in the training group and using 0.632 bootstrap to estimate
the kappa [51].

3.4. Statistical Analysis

The data distribution of each biomedical index was evaluated by means of the Lil-
liefors test. The results showed that wavelet features did not follow a normal distribution.
Consequently, the existence of statistically significant differences (p-value < 0.01) among
OSA severity groups was assessed by means of the non-parametric Kruskal-Wallis test.
Moreover, Spearman’s correlation was used to evaluate the relationship between AHI and
the features under study. Cohen’s kappa of two-class (kappa2) and four-class (kappa4), as
well as the four-class accuracy (Acc4), assessed the agreement between predicted and actual
diagnosis [54]. In addition, the metrics used to evaluate the diagnostic performance of the
machine-learning approaches for the common AHI thresholds 1 e/h, 5 e/h, and 10 e/h
were sensitivity (Se), specificity (Sp), accuracy (Acc), positive and negative predictive
values (PPV and NPV, respectively), and positive and negative likelihood ratios (LR+ and
LR-, respectively). The statistically significant differences (p-value < 0.001) between diag-
nostic metrics of the models were evaluated using the Mann-Whitney U test for pairwise
comparison with Bonferroni correction.
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4. Results
4.1. Training Group
4.1.1. Extracted Features

The coefficients of D8 with and without sign computed by means of Haar obtained
features with an average Spearman’s correlation of 0.2075 and 0.3190, respectively. Regard-
ing Daubechies-5, the features achieved an average correlation of 0.2379 and 0.3447 for
coefficients with and without sign, respectively. Consequently, the features extracted from
D8 in absolute value and with Daubechies-5 were used in the following stages of our study.

Figure 4 displays the averaged detail signal D8 for each severity group in the training
dataset. In this figure, higher amplitude values of D8 can be observed in subjects without
OSA. In addition, the frequency distribution of the values of the D8 coefficients as OSA
severity increases can be visualized in Figure 5. According to this figure, coefficients close
to 0 are more frequent in children with OSA, increasing the asymmetry and the sharpness
of the peak of the distribution as the AHI increases.Sensors 2021, 21, x FOR PEER REVIEW 10 of 19 
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Table 2 shows the median and interquartile range values by OSA severity group of
each feature, as well as its Spearman’s correlation coefficient with the AHI and the p-value
obtained by means of the Kruskal-Wallis test in the training group. M1D8, M2D8, MaxD8,
MinD8, and ED8 showed a decreasing trend as OSA severity increases. In contrast, the
tendency of M3D8, M4D8, and ODI3 was towards higher values. Regarding WE, it showed
less separability between groups, although with a notable increase in the most severe
subjects. In addition, all the extracted features showed significant differences among OSA
severity groups (p-value < 0.01 after Bonferroni correction).
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Table 2. Statistical analysis of the extracted features in the training group.

Feature
No-OSA Mild OSA Moderate OSA Severe OSA

RHO
p-

ValueMedian IQR Median IQR Median IQR Median IQR

M1D8 2.62 0.97 2.46 0.86 2.29 1.03 1.67 1.08 −0.4024 <<0.01
M2D8 2.64 1.27 2.34 1.20 2.27 1.34 1.61 1.28 −0.3058 <0.01
M3D8 0.25 0.69 0.29 0.54 0.50 0.79 1.05 1.06 0.4413 <<0.01
M4D8 2.87 2.76 2.98 1.96 3.58 2.92 5.32 4.34 0.3666 <0.01

MaxD8 6.67 1.09 6.61 0.99 6.59 1.36 6.21 1.44 −0.1662 <0.01
MinD8
(10−3) 2.87 0.84 2.60 0.93 2.52 1.14 1.86 1.06 −0.4154 <<0.01

ED8
(103) 2.68 1.56 2.36 1.41 2.19 1.67 1.33 1.44 −0.3809 <0.01

WE 0.26 0.04 0.25 0.04 0.26 0.05 0.28 0.05 0.2793 <0.01
ODI3 1.16 2.02 2.21 3.24 4.36 5.98 14.28 18.68 0.6979 <<0.01

IQR = Interquartile range; RHO = Spearman’s correlation between the feature and the AHI; p-value = result of
Kruskal-Wallis test after Bonferroni correction; p-value < 10−19 is denoted as <<0.01.

4.1.2. Feature Selection

We carried out 2 selection trials, one only with wavelet features from AF and another
that also included the ODI3. FCBF was applied to 1000 bootstrap replicates obtained from
the training group. In the trial with wavelet features from AF, only M3D8 was selected more
than Ts times (Ts = 125.25). As can be seen in Figure 6, M3D8, MinD8, and ODI3 exceeded
this threshold (Ts = 205.33) when ODI3 was included in the selection process.
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4.1.3. Optimization of Adaboost.M2 and BY-MLP

Two Adaboost.M2 models (ABAF and ABAF,ODI3) and two BY-MLP models (BY-MLPAF

and BY-MLPAF,ODI3) were designed and trained after the feature selection stage. ABAF and
BY-MLPAF models were fed only with the selected wavelet feature from AF (M3D8), while
ABAF,ODI3 and BY-MLPAF,ODI3 models incorporated wavelet features from AF (M3D8 and
MinD8) and ODI3. Regarding the Adaboost.M2 models, we conducted trials with values
of L = [1:9 10:10:90 100:100:900 1000:1000:10000] and of α = [0.1:0.1:1]. The optimization of
these parameters was based on the maximum kappa obtained through 0.632 bootstrap for
the L/α pair: L = 8000 and α = 1 for ABAF and L = 3000 and α = 1 for ABAF,ODI3. Regarding
the BY-MLP models, values of NH = [1:1:40] were used. In this case, the maximum kappa
was reached with NH = 1 for BY-MLPAF and NH = 36 for BY-MLPAF,ODI3.

4.2. Test Group

In order to improve the generalization of our results, the trained models were assessed
in 1000 bootstrap replicates from the test group. The diagnostic performance metrics were
obtained by means of the bootstrap 0.632 procedure and the statistically significant differ-
ences (p-value < 0.001) between models were evaluated using the Mann-Whitney U test for
pairwise comparison with the Bonferroni correction. Tables 3 and 4 show the diagnostic
performance (median [95% confidence interval]) achieved by each of the machine-learning
models proposed in our study, as well as the ODI3. ODI3 showed a severity underestima-
tion in 1 and 5 e/h. Regarding ABAF and BY-MLPAF models, these obtained an unbalanced
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Se-Sp pair, with a severity overestimation in 1 and 5 e/h and an underestimation in 10 e/h.
When combining wavelet features from AF with ODI3 (ABAF,ODI3 and BY-MLPAF,ODI3)
these negative effects of overestimation and underestimation were reduced. BY-MLPAF,ODI3

obtained highest Acc for 1 and 5 e/h and ABAF,ODI3 for 10 e/h, significantly outperforming
(p-value < 0.001) the individual approaches. Moreover, these models also achieved higher
performance than ABAF, BY-MLPAF, and ODI3 in terms of kappa2, kappa4, and Acc4.

Table 3. Diagnostic evaluation of the proposed models and ODI3.

AHI cut-off = 1 e/h

Model Se (%)
[95%CI]

Sp (%)
[95%CI]

Acc (%)
[95%CI]

PPV (%)
[95%CI]

NPV (%)
[95%CI]

LR+
[95%CI]

LR-
[95%CI] kappa2

ABAF 79.89 a,b,c,d

[77.10,82.46]
47.24 a,b,c,d

[39.35,54.83]
73.61 a,b,c,d

[70.86,76.27]
86.43 a,b,c,d

[83.88,88.85]
35.62 a,b,c,d

[29.29,41.47]
1.52 a,b,c,d

[1.36,1.88]
0.43 a,b,c,d

[0.36,0.57]
0.2395 a,b,c,d

[0.1692,0.3059]

ABAF,ODI3 80.26 a,e,f,g

[77.63,83.05]
68.07 a,e,f,g

[61.85,74.49]
77.97 a,e,f,g

[75.54,80.51]
91.45 a,e,f,g

[89.31,93.30]
44.94 a,e,f,g

[38.97,51.32]
2.56 a,e,f,g

[2.20,3.47]
0.29 a,e,f,g

[0.25,0.35]
0.4040 a,e,f,g

[0.3406,0.4677]

BY-MLPAF
100.00 b,e,h,i

[100.00,
100.00]

0.00 b,e,h,i

[0.00, 0.00]
80.85 b,e,h,i

[78.47,83.18]
80.85 b,e,h,i

[78.47,83.18] ND b,e,h,i 1.00 b,e,h,i

[1.00, 1.00] ND b,e,h,i 0.00 b,e,h,i

[0.00, 0,00]

BY-
MLPAF,ODI3

91.16 c,f,h,j

[89.14,93.02]
43.28 c,f,h,j

[36.45,50.59]
81.96 c,f,h,j

[79.46,84.25]
87.18 c,f,h,j

[84.93,89.18]
53.55 c,f,h,j

[45.68,61.85]
1.62 c,f,h,j

[1.46,1.92]
0.21 c,f,h,j

[0.16,0.29]
0.3696 c,f,h,j

[0.2944,0.4413]

ODI3 59.78 d,g,i,j

[56.66,63.32]
86.06 d,g,i,j

[80.83,90.79]
64.81 d,g,i,j

[61.89,67.97]
94.79 d,g,i,j

[92.83,96.64]
33.68 d,g,i,j

[29.46,38.12]
4.59 d,g,i,j

[3.52,10.83]
0.47 d,g,i,j

[0.42,0.52]
0.2875 d,g,i,j

[0.2424,0.3422]

AHI cut-off = 5 e/h

Model Se (%)
[95%CI]

Sp (%)
[95%CI]

Acc (%)
[95%CI]

PPV (%)
[95%CI]

NPV (%)
[95%CI]

LR+
[95%CI]

LR-
[95%CI] kappa2

ABAF 74.43 a,b,c,d

[70.10,79.12]
47.18 a,b,c,d

[43.31,51.21]
57.46 a,c,d

[54.40,60.51]
45.81 a,c,d

[42.12,49.93]
75.57 a,b,c,d

[71.57,79.90]
1.42 a,c,d

[1.30,1.58]
0.54 a,b,c,d

[0.44,0.65]
0.1928 a,c,d

[0.1408,0.2467]

ABAF,ODI3 68.03 a,e,f,g

[63.10,72.79]
90.28 a,e,f,g

[87.94,92.45]
81.91 a,e,f

[79.50,84.36]
80.78 a,e,f,g

[76.22,85.18]
82.49 a,e,f,g

[79.67,85.32]
7.18 a,e,f,g

[5.91,11.14]
0.35 a,e,f,g

[0.30,0.41]
0.6009 a,e,f

[0.5497,0.6540]

BY-MLPAF 77.25 b,e,h,i

[73.13,81.50]
45.05 b,e,h,i

[41.40,49,13]
57.14 e,h,i

[54.20,60.27]
45.82 e,h,i

[42.03,49.81]
76.89 b,e,h,i

[72.83,81.24]
1.41 e,h,i

[1.30,1.57]
0.50 b,e,h,i

[0.41,0.62]
0.1967 e,h,i

[0.1475,0.2481]
BY-

MLPAF,ODI3
79.32 c,f,h,j

[74.90,83.50]
83.83 c,f,h,j

[80.92,86.61]
82.14 c,f,h,j

[79.84,84.40]
74.57 c,f,h,j

[70.37,79.04]
87.17 c,f,h,j

[84.52,89.91]
4.97 c,f,h,j

[4.28,6.52]
0.25 c,f,h,j

[0.20,0.30]
0.6221 c,f,h,j

[0.5754,0.6696]

ODI3 69.45 d,g,i,j

[64.63,74.16]
89.38 d,g,i,j

[86.91,91.68]
81.88 d,i,j

[79.54,84.25]
79.79 d,g,i,j

[75.04,83.97]
83.01 d,g,i,j

[80.30,85.84]
6.68 d,g,i,j

[5.60,10.17]
0.34 d,g,i,j

[0.29,0.40]
0.6024 d,i,j

[0.5509,0.6553]

AHI cut-off = 10 e/h

Model Se (%)
[95%CI]

Sp (%)
[95%CI]

Acc (%)
[95%CI]

PPV (%)
[95%CI]

NPV (%)
[95%CI]

LR+
[95%CI]

LR-
[95%CI] kappa2

ABAF 41.06 a,b,c,d

[34.66,47.67]
85.52 a,b,c,d

[83.13,87.83]
76.07 a,b,c,d

[73.51,78.39]
43.30 a,b,c,d

[36.89,50.53]
84.28 a,b,c,d

[81.92,86.60]
2.86 a,b,c,d

[2.36,3.80]
0.69 a,b,c,d

[0.61,0.77]
0.2697 a,b,c,d

[0.2040,0.3363]

ABAF,ODI3 72.37 a,e,f,g

[66.59,77.90]
95.99 a,e,f,g

[94.60,97.31]
90.99 a,e,f,g

[89.29,92.61]
83.01 a,e,f,g

[77.43,88.45]
92.76 a,e,f,g

[91.03,94.44]
18.99 a,e,f,g

[14.60,51.76]
0.29 a,e,f,g

[0.23,0.35]
0.7159 a,e,g

[0.6605,0.7677]

BY-MLPAF 50.00 b,e,h,i

[42.96,56.68]
75.96 b,e,h,i

[73.18,78.80]
70.47 b,e,h,i

[67.77,73.07]
35.97 b,e,h,i

[30.57,41.70]
84.86 b,e,h,i

[82.28,87.30]
2.10 b,e,h,i

[1.77,2.55]
0.66 b,e,h,i

[0.57,0.76]
0.2271 b,e,h,i

[0.1623,0.2886]
BY-

MLPAF,ODI3
74.85 c,f,h,j

[68.75,80.51]
95.00 c,f,h,j

[93.42,96.46]
90.69 c,f,h,j

[88.87,92.47]
80.04 c,f,h,j

[74.53,85.78]
93.32 c,f,h,j

[91.66,94.91]
15.60 c,f,h,j

[12.23,30.31]
0.26 c,f,h,j

[0.21,0.33]
0.7141 c,h,j

[0.6570,0.7660]

ODI3 81.05 d,g,i,j

[75.71,86.12]
88.58 d,g,i,j

[86.34,90.76]
87.00 d,g,i,j

[84.93,89.06]
65.84 d,g,i,j

[60.31,71.74]
94.55 d,g,i,j

[93.01,96.10]
7.23 d,g,i,j

[6.10,9.98]
0.21 d,g,i,j

[0.16,0.27]
0.6422 d,g,i,j

[0.5894,0.6956]

Se = sensitivity; Sp = specificity; Acc = accuracy; PPV = positive predictive value; NPV = negative predictive value; LR+ = positive
likelihood ratio; LR- = negative likelihood ratio; kappa2 = Cohen’s kappa of two-class; 95%CI = 95% confidence interval; ND = Non defined;
ODI3 = 3% oxygen desaturation index; ABAF = Adaboost.M2 fed with optimal wavelet features from AF; ABAF,ODI3 = Adaboost.M2 fed
with optimal wavelet features from AF and ODI3; BY-MLPAF = Bayesian multi-layer perceptron fed with optimal wavelet features from
AF; BY-MLPAF,ODI3 = Bayesian multi-layer perceptron fed with optimal wavelet features from AF and ODI3, a Significant differences
(p-value < 0.001) between ABAF and ABAF,ODI3; b Significant differences (p-value < 0.001) between ABAF and BY-MLPAF; c Significant
differences (p-value < 0.001) between ABAF and BY-MLPAF,ODI3; d Significant differences (p-value < 0.001) between ABAF and ODI3;
e Significant differences (p-value < 0.001) between ABAF,ODI3 and BY-MLPAF; f Significant differences (p-value < 0.001) between ABAF,ODI3

and BY-MLPAF,ODI3; g Significant differences (p-value < 0.001) between ABAF,ODI3 and ODI3; h Significant differences (p-value < 0.001)
between BY-MLPAF and BY-MLPAF,ODI3; i Significant differences (p-value < 0.001) between BY-MLPAF and ODI3; j Significant differences
(p-value < 0.001) between BY-MLPAF,ODI3 and ODI3.
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Table 4. Global diagnostic metrics of the proposed models and ODI3.

kappa4 [95%CI] Acc4 (%) [95%CI]

ABAF 0.1126 [0.0796,0.1466] a,b,c,d 30.52 [27.90,33.37] a,b,c,d

ABAF,ODI3 0.4021 [0.3605,0.4463] a,e,f,g 57.46 [54.47,60.60] a,e,f

BY-MLPAF 0.0664 [0.0342,0.1004] b,e,h,i 32.53 [29.87,35.20] b,e,h,i

BY-MLPAF,ODI3 0.4088 [0.3637,0.4493] c,f,h,j 58.57 [55.36,61.47] c,f,h,j

ODI3 0.3826 [0.3362,0.4258] d,g,i,j 57.23 [53.95,60.22] d,i,j

kappa4 = Cohen’s kappa of four-class; Acc4 = four-class accuracy; 95%CI = 95% confidence interval; ODI3 =
3% oxygen desaturation index; ABAF = Adaboost.M2 fed with optimal wavelet features from AF; ABAF,ODI3 =
Adaboost.M2 fed with optimal wavelet features from AF and ODI3; BY-MLPAF = Bayesian multi-layer perceptron
fed with optimal wavelet features from AF; BY-MLPAF,ODI3 = Bayesian multi-layer perceptron fed with optimal
wavelet features from AF and ODI3; a Significant differences (p-value < 0.001) between ABAF and ABAF,ODI3;
b Significant differences (p-value < 0.001) between ABAF and BY-MLPAF; c Significant differences (p-value < 0.001)
between ABAF and BY-MLPAF,ODI3; d Significant differences (p-value < 0.001) between ABAF and ODI3; e Signifi-
cant differences (p-value < 0.001) between ABAF,ODI3 and BY-MLPAF; f Significant differences (p-value < 0.001)
between ABAF,ODI3 and BY-MLPAF,ODI3; g Significant differences (p-value < 0.001) between ABAF,ODI3 and ODI3;
h Significant differences (p-value < 0.001) between BY-MLPAF and BY-MLPAF,ODI3; i Significant differences
(p-value < 0.001) between BY-MLPAF and ODI3; j Significant differences (p-value < 0.001) between BY-MLPAF,ODI3

and ODI3.

5. Discussion

In the present work, we characterized overnight pediatric AF by means of wavelet
features obtained from the normal respiratory band. In addition, we showed the com-
plementarity between the wavelet analysis conducted on AF and ODI3, obtaining two
machine-learning models with high performance to diagnose pediatric OSA. The interpre-
tation of our findings is detailed below.

5.1. Training Group

Our results revealed that the mother wavelet Daubechies-5 is better suited to the
nocturnal AF behavior of children than the Haar wavelet. This may be because Daubechies-
5 uses more vanishing moments and a larger support width than Haar (Figure 3), which
allowed to obtain a more precise phase space and time-frequency location, as well as to
focus and detect the singularities of the AF signal [37,38].

According to Figures 4 and 5, the subjects without OSA presented higher values of
D8, as well as a less asymmetric and less peaked distribution than the subjects with OSA.
These amplitude and distribution differences agree with the information provided by the
statistical analysis carried out in the training group. Thereby, M1D8 and M2D8 showed
a decreasing tendency as the OSA severity increased. This fact is consistent with a less
activity in the normal breathing band as AHI increased, which causes a notable reduction of
the coefficients of signal D8 from AF and a narrower dispersion range. Regarding M3D8 and
M4D8, these experienced an increasing tendency, i.e., greater positive skewness and greater
sharpness of the distribution peak in lower values of the coefficients of D8 as the AHI is
higher. This indicates that apneas and hypopneas change the frequency distribution of AF
signal and reduce its frequency components in the normal breathing band, which leads to
fewer high coefficients and more coefficients close to zero in this band. According to this
reduction of coefficients, the maximum and minimum values of D8 (MaxD8 and MinD8), as
well as the energy of this level (ED8), were lower as the severity of OSA increased. This
decrease revealed that apneic events reduce the detail signal amplitude and the activity
produced in the resolution level associated to the normal breathing band, which agrees
with a lower occurrence of normal breathing patterns. Moreover, an increase of WE could
also be observed in the severely affected children. This fact suggests that severe OSA
disturbs the energy distribution of AF signal at the different levels of decomposition. In
this way, the wavelet energy is redistributed in other frequency bands associated with
apneic events instead of concentrating in the normal breathing band. Consequently, the AF
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signal becomes more irregular in these cases. Thus, we showed that DWT provided useful
information to characterize the nocturnal AF of children, as well as its behavior in presence
of apneic events.

5.2. Feature Selection and Diagnostic Performance

Despite the clear tendencies shown by the 8 wavelet features extracted from AF, only
the asymmetry of the distribution of the coefficients of D8 (M3D8) was relevant and not
redundant with respect to the rest. This is coherent with the statistical analysis carried out
in the training group, where M3D8 not only showed significant differences among severity
groups, but was also the wavelet feature that obtained highest Spearman’s correlation with
the AHI. Thus, the selection of M3D8 suggests that its individual utility to characterize the
pediatric OSA is greater than individual and joint usefulness of the other wavelet features.

However, FCBF revealed that there is complementarity between ODI3 and the wavelet
information obtained from both M3D8 and MinD8. In this regard, M3D8, MinD8, and ODI3
showed a clear separability among OSA severity groups (lower p-value), as well as a higher
Spearman’s correlation with the AHI. Notice that FCBF did not select MinD8 in the trial
with wavelet features from AF, but it was selected when ODI3 was included in the selection
process. Due to the final subset is obtained as the union of the feature subsets selected
in ≥Ts bootstrap replicates [46], this fact suggests that MinD8 contributes with additional
information to ODI3 and different from that provided by M3D8, which highlights the joint
usefulness of these features. Therefore, the information about the occurrence of apneic
events provided by DWT through the distribution asymmetry (M3D8) and the minimum
amplitude of D8 (MinD8) from AF is complementary to the information provided by ODI3
about the occurrence of desaturations.

This complementarity was also reflected in the machine-learning models used to
classify children in 4-classes of OSA severity and estimate their AHI. ABAF, BY-MLPAF, and
ODI3 achieved a moderate diagnostic performance in the testing group. These approaches
were significantly outperformed (p-value < 0.001) by BY-MLPAF,ODI3 in kappa2 for the 3
AHI cut-offs, kappa4, and Acc4, as well as by ABAF,ODI3 in kappa2 for 1 and 10 e/h and
kappa4. This fact revealed that the agreement between the predicted and actual OSA
severity improves when wavelet information and ODI3 are combined, which confirmed
the complementarity of both approaches. Moreover, the diagnostic accuracies reached by
BY-MLPAF,ODI3 for 1, 5, and 10 e/h and ABAF,ODI3 for 1 and 10 e/h were also significantly
higher (p-value < 0.001) than those obtained by the individual approaches. In this regard,
BY-MLPAF,ODI3 achieved a more balanced Se-Sp pair in 5 e/h, as well as significantly higher
Se and Acc (p-value < 0.001) than ABAF,ODI3 in 1 and 5 e/h. Hence, the AHI estimated
by BY-MLPAF,ODI3 could be used by medical personnel to discriminate between mildly
to moderately affected subjects. In addition, ABAF,ODI3 obtained a statistically significant
higher Acc (p-value < 0.001) for 10 e/h. Furthermore, as LR+ > 10 is a robust indicator
to determine the presence of a disease [55], the significantly higher LR+ (p-value < 0.001)
obtained with ABAF,ODI3 for 10 e/h (LR+ = 18.99 [14.60, 51.76]) indicated that this model
provides greater evidence than BY-MLPAF,ODI3 to detect severe OSA. Consequently, this
multiclass classifier could be used as a potential automatic tool to this purpose. Therefore,
the methodology proposed in the present study would be a useful alternative to noctur-
nal polysomnography, since it would help to simplify and streamline the pediatric OSA
diagnosis in a timely fashion that potentially prevents the generation and worsening of
deleterious consequences.

5.3. Comparison with Other Studies

As shown in Table 5, several studies focused on the simplification of pediatric OSA
have applied automatic analysis techniques to polysomnographic signals such as ECG,
PPG, SpO2, and AF [8–14,17,25,47]. In this regard, Shouldice et al. [10] applied temporal
and spectral analysis methods to 50 ECG signals, obtaining 84.00% Acc for 1 e/h. Other
studies such as those carried out by Gil et al. [8] and Dehkordi et al. [9] analyzed 21 and
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146 PPG signals, respectively. They evaluated their proposal using 5 e/h as AHI cut-off for
positive OSA and reached 80.00% Acc and 71.00% Acc, respectively. However, despite the
high diagnostic performance achieved by these studies, the small sample size makes their
results difficult to generalize.

In contrast, some studies involved a larger number of children (207–4191) [12–14,47].
Hornero et al. [13], Xu et al. [47], and Garde et al. [14] based their studies on the automatic
analysis of SpO2 signals, while Jiménez-García et al. [12] focused on AF together with SpO2.
They used the AHI cut-offs 1, 5, and 10 e/h, obtaining accuracies that ranged between
75.00–81.28%, 79.40–82.05%, and 88.19–90.26%, respectively. However, the diagnostic
accuracies obtained by these studies were outperformed by our current proposal for all the
3 AHI cut-offs.

The work of Vaquerizo-Villar et al. [25], a previous study from our research group, was
based on wavelet analysis combined with other features extracted from 981 SpO2 signals.
This study used only the AHI cut-off 5 e/h to determine the presence of OSA, achieving a
high Acc. However, our current proposal was evaluated according to the different severity
categories, which allowed us to also identify children without OSA as well as the severely
affected ones. In this regard, our methodology showed great usefulness for detecting
severe cases (Acc = 90.99% [89.29,92.61] and LR+ = 18.99 [14.60,51.76] with ABAF,ODI3 for
10 e/h). As these pediatric subjects have an increased risk of developing comorbidities and
neurocognitive deficits [1,5], our tool would allow to diagnose and treat these cases early
on, before the consequences are irreversible. Moreover, automatic detection of no-OSA
cases would reduce the waiting lists and streamline the diagnosis of children affected by
this disease. In addition, it is worth noting the achieved improvement with respect to
our previous study based on recurrence plots from AF [17]. Although the Acc in 1 e/h
was lower, a more balanced Se-Sp pair should be noted, as well as the higher diagnostic
performance obtained in 5 e/h. Moreover, we outperformed the Acc and LR+ obtained in
10 e/h, thus our current proposal is more robust to detect severe OSA. Regarding our latest
work focused on the bispectral analysis of AF [56], it was improved in Sp, PPV, and LR+ for
1 and 5 e/h, as well as in all diagnostic metrics for 10 e/h by the current proposal. Hence,
the DWT would be a more potentially useful tool than bispectrum to diagnose severe OSA
cases in a timely fashion. Furthermore, DWT revealed changes of energy and frequency
components of AF, that could not have been detected with bispectrum or recurrence plots.

5.4. Limitations and Future Work

One of the limitations of this study is the size of the population under study, since it
would have been desirable to analyze a larger set of AF signals originating from multiple
sources to ensure more generalizable results. Although we have shown that Daubechies-5
better reflects the behavior of AF than Haar, other mother wavelets that have not yet been
applied in this context could be analyzed in future studies, and the results obtained with
each of them could be compared. Moreover, it would also be interesting to search for
mother wavelets that more closely resemble the shape of AF signal. The use of DWT and
the analysis of the detail level D8 have also shown its usefulness in the diagnosis of the
disease. However, wavelet packet decomposition could be applied in future research to
obtain detail levels more fitting to the frequency features of the AF signal [57]. In addition,
another future goal is to perform multiclass classification and/or AHI estimation through
other advanced techniques of pattern recognition, such as deep-learning [58], and pediatric
AF at-home recordings. Finally, the analysis proposed in this study could be used along
with other PSG-derived signals, such as thoracic or abdominal effort, to distinguish among
obstructive, central, and mixed apneic events in future research [15].
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Table 5. Comparison with other studies of the literature.

Study Nº Subjects
(Total Dataset/Test Set) Signal Methods

(Analysis/Selection/Classification) AHI cut-off (e/h) Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%)

Shouldice et al. (2004) [10] 50/25 ECG Temporal and spectral analysis/–/ QDA 1 85.70 81.80 85.70 81.80 4.71 0.18 84.00

Gil et al. (2010) [8] 21/21 PPG Analysis of HRV, PTTV, and DAP
events/Wrap method/LDA 5 75.00 85.70 - - 5.24 * 0.29 * 80.00

Dehkordi et al. (2016) [9] 146/146 PPG Temporal, spectral, and detrended
fluctuation analysis/LASSO/LASSO 5 76.00 68.00 - - 2.38 * 0.35 * 71.00

Hornero et al. (2017) [13] 4,191/3,602 SpO2

Statistical, spectral, non-linear
analysis, and ODI3/FCBF/

MLP

1 84.02 53.19 81.64 57.34 1.79 0.30 75.15
5 68.16 87.19 68.62 86.95 5.32 0.37 81.65

10 68.66 94.07 67.68 94.31 11.58 0.33 90.17

Vaquerizo-Villar et al.
(2018) [25] 981/392 SpO2

Statistical, spectral, wavelet analysis, and
ODI3/FCBF/SVM 5 71.90 91.10 83.80 84.50 14.60 0.31 84.00

Xu et al. (2019) [47] 432/432 SpO2

ODI3 and 3rd statistical
moment of the spectral band

of interest/FCBF/MLP

1 95.34 19.10 81.96 * 51.52 * 1.18 0.25 79.63
5 77.78 80.46 72.28 * 84.68 * 3.99 0.27 79.40

10 73.53 92.73 75.76 * 91.89 * 10.07 0.29 88.19

Garde et al. (2019) [14] 207/207 SpO2
PRV

Temporal and spectral
analysis/Stepwise-selection/LR

1 80.00 65.00 - - 2.29 * 0.31 * 75.00
5 85.00 79.00 - - 4.05 * 0.19 * 82.00

10 82.00 91.00 - - 9.11 * 0.20 * 89.00

Barroso-García et al.
(2020) [17] 946/376 AF

ODI3
Recurrence quantification analysis and

ODI3/FCBF/BY-MLP

1 97.70 22.22 84.14 69.57 1.26 0.10 83.24
5 78.72 78.30 68.52 85.98 3.63 0.27 78.46

10 78.75 94.26 78.75 94.26 13.71 0.23 90.96

Jiménez-
García et al.
(2020) [12]

974/390
AF

SpO2

Statistical, non-linear, spectral
analysis, and ODI3/FCBF /

Multiclass AdaBoost.M2 with LDA

1 92.06 36.00 85.80 51.92 1.44 0.22 81.28
5 76.03 85.66 76.03 85.66 5.30 0.28 82.05

10 62.65 97.72 88.14 90.63 27.48 0.38 90.26

Barroso-García et al.
(2021) [56] 946/376 AF

ODI3
Bispectral analysis and ODI3/FCBF/MLP

1 98.03 15.27 83.01 65.01 1.16 0.14 82.16
5 81.56 83.00 74.17 88.25 4.85 0.22 82.49

10 72.29 94.98 79.58 92.69 15.01 0.29 90.15

This study 946/376 AF
ODI3

Wavelet analysis and
ODI3/FCBF/Multiclass AdaBoost.M2

with decision trees

1 80.26 68.07 91.45 44.94 2.56 0.29 77.97
5 68.03 90.28 80.78 82.49 7.18 0.35 81.91

10 72.37 95.99 83.01 92.76 18.99 0.29 90.99

Wavelet analysis and
ODI3/FCBF/BY-MLP

1 91.16 43.28 87.18 53.55 1.62 0.21 81.96
5 79.32 83.83 74.57 87.17 4.97 0.25 82.14

10 74.85 95.00 80.04 93.32 15.60 0.26 90.69

QDA = Quadratic discriminant analysis, HRV = Heart rate variability, PTTV = Pulse transit time variability, DAP = Decreases in amplitude fluctuations of the PPG signal, LDA = Linear discriminant analysis,
LASSO = Least absolute shrinkage and selection operator, ODI3 = 3% oxygen desaturation index, FCBF = Fast correlation based filter, MLP = Multi-Layer perceptron neural network, FSLR = Forward stepwise
logistic regression, LR = Logistic regression model, SVM = Support vector machine, PRV = Pulse rate variability, BY-MLP = Multi-Layer perceptron neural network with Bayesian approach. * Computed from
reported data.
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6. Conclusions

In this study, nocturnal AF of children has been characterized by means of features
from wavelet analysis. We found that apneic events decrease the detail coefficients of the
DWT associated to the normal breathing band (lower values of M1D8, MaxD8, and MinD8),
as well as the activity produced in the frequency range 0.1953–0.3906 Hz of AF (lower
values of ED8). Wavelet analysis also revealed that OSA changes the frequency and energy
distribution of AF signal, reducing its frequency components in the normal breathing band
(higher values of M3D8 and M4D8) and generating more global irregularity in the signal
(higher values of WE). Our study also found complementarity between DWT features from
AF and ODI3. These findings allowed us to obtain a BY-MLP model with high diagnostic
accuracy to estimate the AHI of mildly to moderately affected children, as well as an
AdaBoost.M2 model particularly useful for classifying severe pediatric subjects. Therefore,
we conclude that DWT can characterize the nocturnal AF, and that such approach could be
jointly used with ODI3 to simplify the diagnosis of OSA in children.
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