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Abstract
Objective. Nested into slow oscillations (SOs) and modulated by their up-states, spindles are
electrophysiological hallmarks of N2 sleep stage that present a complex hierarchical architecture.
However, most studies have only described spindles in basic statistical terms, which were limited to
the spindle itself without analyzing the characteristics of the pre-spindle moments in which the
SOs are originated. The aim of this study was twofold: (a) to apply spectral and temporal measures
to the pre-spindle and spindle periods, as well as analyze the correlation between them, and (b) to
evaluate the potential of these spectral and temporal measures in future automatic detection
algorithms. Approach. An automatic spindle detection algorithm was applied to the overnight
electroencephalographic recordings of 26 subjects. Ten complementary features (five spectral and
five temporal parameters) were computed in the pre-spindle and spindle periods after their
segmentation. These features were computed independently in each period and in a time-resolved
way (sliding window). After the statistical comparison of both periods, a correlation analysis was
used to assess their interrelationships. Finally, a receiver operating-characteristic (ROC) analysis
along with a bootstrap procedure was conducted to further evaluate the degree of separability
between the pre-spindle and spindle periods.Main results. The results show important
time-varying changes in spectral and temporal parameters. The features calculated in pre-spindle
and spindle periods are strongly and significantly correlated, demonstrating the association
between the pre-spindle characteristics and the subsequent spindle. The ROC analysis exposes that
the typical feature used in automatic spindle detectors, i.e. the power in the sigma band, is
outperformed by other features, such as the spectral entropy in this frequency range. Significance.
The novel features applied here demonstrate their utility as predictors of spindles that could be
incorporated into novel algorithms of automatic spindle detectors, in which the analysis of the
pre-spindle period becomes relevant for improving their performance. From the clinical point of
view, these features may serve as novel precision therapeutic targets to enhance spindle production
with the aim of improving memory, cognition, and sleep quality in healthy and clinical
populations. The results evidence the need for characterizing spindles in terms beyond power and
the spindle period itself to more dynamic measures and the pre-spindle period. Physiologically,
these findings suggest that spindles are more than simple oscillations, but nonstable oscillatory
bursts embedded in the complex pre-spindle dynamics.
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1. Introduction

Human neural activity manifests characteristic and
intricate patterns that depend on brain state. This
complex structure of neural dynamics is not limited
to wakefulness, as demonstrated by several studies
focusing on sleep states [1–4]. One of the main prop-
erties of neural activity during sleep is the intrinsic
macroarchitecture, which characterizes two well-
differentiated stages: rapid eye movement (REM)
and non-REM (NREM). According to the American
Academy of SleepMedicine (AASM), NREM, in turn,
consists of three different stages [5]: N1, N2, and N3.
Even within the same sleep stage, a complex microar-
chitecture exists, which comprises both slow and fast
nonstationary phasic burst-like events [6], as well as
tonic periods; impacting both the ongoing spectral
and temporal patterns of the neural activity. Due to
the transitory nature of these phasic events, the use of
techniques with a high temporal resolution becomes
necessary. For this reason, the electroencephalogram
(EEG) is the gold-standard approach to assess neural
microarchitecture during sleep.

Distant areas of the brain (e.g. the thalamus and
cortex) communicate actively while sleeping. Dur-
ing NREM sleep, this highly structured and coordin-
ated communication occurs in a burstmode, whereby
greater functional connectivity as compared to wake
is observed in particular networks such as the dorsal
attention network [7], while other networks such as
the visual, auditory, somatomotor, and default mode
networks remain unchanged [7]. Accordingly, dif-
ferent brain waves such as spindles and slow oscil-
lations (SOs) are generated by rhythmic thalamo-
cortical neuronal firing. These complex interactions
contain information that may reflect their function,
encoded in their temporal structure. Among them,
sleep spindles are sparking growing interest due to the
increasing evidence on their role in a number of cog-
nitive processes during sleep [8–11]. Spindles, EEG
hallmarks of N2, are recognizable bursts of 11–16 Hz
(sigma frequency activity) in the EEG [10]. Spindles
are not isolated events. In fact, spindles are gener-
ally nested with other oscillations in a distinctive
hierarchical manner, in which SOs coordinate the
organization of a triplet of waves: SO themselves,
spindles, and ripples [12]. SOs are oscillations around
0.75Hz that facilitate the production of spindles [12].
Spindles are modulated by the up-state of the SO
which, in turn, facilitates the production of high fre-
quency bursts around 100 Hz in the hippocampus,
called ripples [12, 13]. Through the dynamic interac-
tion of these three events, information is exchanged
between distributed neocortical and subcortical sites
allowing for a variety of cognitive functions, some of
them not fully understood yet [12, 14].

Despite the complex nested hierarchy of elec-
trophysiological waves and bursts in which spindles
appear to be embedded, most studies only have

described spindles in basic statistical terms (i.e. dur-
ation of spindles, number of spindles per minute, or
evolution of their appearance throughout the night)
[12] or, in some cases, by a distinction of spindles
(i.e. fast and slow) based on their oscillatory fre-
quency [15, 16].Much less often, othermeasurements
have been used for the characterization of spindles,
such as spectral power in the sigma band or coher-
ence [17], and interactions with other oscillatory fre-
quencies [18]. This provides a rather limited insight
into the dynamics of spindles. Investigations on the
awake state point out the importance of using com-
plementary spectral and temporal features like irreg-
ularity (indexed by spectral entropy (SE) [19] or
sample entropy [20]), spectral distribution (indexed
by median frequency (MF) [21] or power law expo-
nent (PLE) [22]), complexity (indexed by Lempel–
Ziv [23]), variability (indexed by central tendency
measure (CTM) [24] and trial-to-trial variability
(TTV) [25]) and periodicity (indexed by autocor-
relation window (ACW) [26]), for describing neural
activity changes during rest and/or task states. Due
to the nature of the spindle as a frequency burst of
EEG activity, it is expected that not only the relat-
ive power (RP) changes during the spindle, but also
other characteristics such as those previously men-
tioned. Most notably, dynamic changes in these fea-
tures can, in part, be observed in awake state already
prior to the onset of the actual stimulus or task [22,
25], that is, in the pre-stimulus period. Taking these
lessons from awake states, one may raise the question
whether the spindle dynamics are characterized by
somewhat analogous changes in both pre- and post-
spindle intervals. Specifically, one would hypothesize
changes in the dynamics of the prespindle period to
precede the actual onset of the spindle. That is even
more likely given that the long cycle duration of the
SOs, as known to be instrumental in spindle gen-
eration [12], may cut across the distinction of pre-
and post-spindle periods. Therefore, the characteriz-
ation of both pre-spindle and post-spindle periods in
order to trace their changes over time could serve the
purpose to track the dynamics of spindle generation
which, as we will raise in the following, may improve
spindle detection.

For dimensionality and scalability reasons, most
of the spindle-related studies rely on their automatic
detection. Any potential bias from these algorithms
would transfer to statistical analyses, which could
explain the infrequent lack of correlation between
spindle features and specific cognitive traits (correl-
ated in other studies) [15]. However, the perform-
ance of automatic detectors has been shown to be
worse than the performance of manual labeling by
both expert and non-expert groups [27]. A possible
cause of the underperforming of automatic spindle
detectors compared to manual scoring could consist
in the lack of considering spindle dynamics by includ-
ing their changes from pre- to post-spindle period.
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Including pre- and post-spindle dynamics in auto-
matic algorithms may therefore hold the promise to
improve the reliability of spindle detection.

Many detection approaches are based almost
exclusively on detecting an increase of power in
the sigma frequency band. The particular algorithm
behind each method varies significantly, ranging
from analyses based on the wavelet transform [28, 29]
and other transformations, such as Gabor [30], com-
plex demodulation [31] or Fourier transforms [32],
to the use of filters and statistical methods [33]. How-
ever, the description of the temporal dynamics of
spindles should not be restricted to the amplitude
of the spindle power itself and should also involve
the pre-spindle period as that may, dynamically,
modulate time-varying properties during the spindle
period, thus, considering the hierarchical complex in
which they are embedded. In particular, spindles are
modulated by the SO and are nested in those oscil-
lations. SOs are normally generated previously to the
emergence of a spindle, phase-locked to them. Addi-
tionally, other features considering the changes in the
dominant frequency, the width of the sigma band or
the irregularity of the oscillations could enhance the
performance of automatic spindle detectors.

Due to the particular relationship between
spindles and SOs (generated previously to the spindle
onset), we hypothesized that there would be a cor-
relation between the features of the pre-spindle and
spindle periods. We also propose different spectral
and/or temporal features besides power in the sigma
band that can serve as potential therapeutic targets to
enhance spindles with the aim of improving cogni-
tion. Furthermore, by improving the characterization
of spindles, higher performance automatic spindle
detectors could be developed, reducing the bias in
subsequent analyses. In order to test these hypotheses,
the objective of this study is twofold: (a) to apply
spectral and temporal measures to the pre-spindle
and spindle periods, as well as analyze the correlation
between them, and (b) to evaluate the potential of
these spectral and temporal measures in future auto-
matic detection algorithms. For this purpose, EEG
signals from overnight polysomnography (PSG) were
acquired. Then, after the automatic spindle detec-
tion, five spectral and five temporal features were
computed for pre-spindle and spindle periods both
individually and in a time-resolved way. Finally, in
order to assess the feasibility of using these meas-
ures in future automatic spindle detectors, the degree
of separability between the pre-spindle and spindle
periods was assessed using the evaluated measures as
a naïve classifier.

2. Materials andmethods

2.1. EEG recordings and sleep stage labeling
A total of 26 young adults (26.00 ± 6.69 years, 18
women) free from sleep and neurological disorders

were recruited in this study. After obtaining informed
written consent from the participants, physiological
signals were recorded during an overnight PSG using
Embla Titanium PSG systems (Natus, San Carlos,
CA). EEG was acquired at a sampling rate of 256 Hz,
while keeping the impedances under 5 kΩ. Thir-
teen gold-plated electrodes were placed according the
international 10–20 system (scalp locations: F3, Fz,
F4, C3, Cz, C4, P3, Pz, P4, Oz, M1 andM2) and refer-
enced to FPz andAFz for the ground. Ethical approval
was obtained from the Research Ethics Board at the
Institut Universitaire de Gériatrie de Montréal.

Once acquired, EEG signals were re-referenced
offline to the average activity of the mastoid deriva-
tions (M1 and M2) for sleep stage scoring and sub-
sequent analysis. RemLogic analysis software (Natus)
was used to label the sleep stages (wake, N1, N2, N3,
REM) in epochs of 30 s and to mark noisy segments
(excluded from further analysis) in, as recommended
by the AASM [5].

2.2. Automatic spindle detection and segmentation
An automatic spindle detection method implemen-
ted in EEGLAB [34] was carried out on the cor-
tical midline electrodes (Fz, Cz and Pz) using a well-
established [35, 36] and validated method [31]. In
brief, the algorithm is based on a complex demodula-
tion method, where a carrier frequency in the center
of the spindle range (13.5 Hz) is shifted towards the
origin by multiplying the signal, x [n], by e−iwn, being
i the imaginary unit andw the angular frequency. The
resulting signal, y [n], is then low-pass filtered (infin-
ite impulse response, 4th order Butterworth filter)
in both forward and reverse directions (zero-phase
digital filtering), removing the frequency compon-
ent outside the band of interest [31]. Finally, spindle
events were automatically detected when the amp-
litude of y [n] on the normalized signal is higher than
the 99th percentile [31]. For this study, the spindles
with a duration larger than 0.5 and shorter than 2 s
were selected, since they representmore than the 99%
of the total number of spindles. The Matlab code
for automatic spindle detection is freely available at:
https://github.com/stuartfogel/detect_spindles. Res-
ults are reported for slow spindles detected at Fz
(11–13.5 Hz), fast spindles at Pz (13.5–16 Hz) and
full-bandwidth spindles at Cz (11–16 Hz).

Once the spindles were detected, a band-pass
finite impulse response filter (Hamming window)
between 1 and 30 Hz was applied for increas-
ing the signal-to-noise ratio in a frequency range
that sufficiently encompasses SOs and spindles. To
verify that all 30 s epochs contaminated by arti-
facts were removed, an adaptive epoch rejection
protocol previously validated was applied [37, 38].
This algorithm uses a statistical-based thresholding
method to remove the noisy epochs following a two-
step process. First, the mean and standard deviation
(SD) of each channel was computed. Then, those
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Figure 1. Illustration of the spindle segmentation. Each 3 s trial comprises the pre-spindle (1 s, in blue) and the spindle periods
(2 s, in red). The representation of the time frequency shows a noticeable increase of the sigma band power mainly in the first
second after the spindle onset. The normalized power spectral density (PSDn) was independently calculated in the pre-spindle
and spindle periods in logarithmic scale to highlight the spindle frequency range (11–16 Hz, red shadow).

epochs that exceeded mean ± 4 × SD in at least two
channels were discarded.

Finally, spindles were segmented from 1 s before
to 2 s after the spindle onset (time range: [−1 2] s).
Figure 1 illustrates this segmentation, while showing
the power spectral density (PSD) (Welch method) in
the pre-spindle and spindle periods. The validation of
preprocessing and spindle detection procedures was
tested in a previous work [39].

2.3. EEG processing
With the aim of thoroughly characterizing spindles,
both spectral and temporal measures were applied in
two different ways: (a) calculation in a time-resolved
way using a sliding window (window length of 0.5 s,
overlap 90%), and (b) independent calculation dur-
ing the pre-spindle ([−1 0] s) and spindle ([0 2] s)
periods.

The selected ten measures (five spectral and five
temporal parameters) uncover diverse properties that
provide an extensive characterization of neural activ-
ity; from the more typical ones employed in previ-
ous spindle studies (such us RP in the sigma band)
to measures not applied before in this context (e.g.
Lempel–Ziv complexity (LZC), entropy and PLE).
Below,we provide definitions and procedures to com-
pute each of them. Figure 2 depicts the overall work-
flow followed for the analyses in this study.

2.3.1. Spectral features
Brain dynamics are reflected in the spectral compon-
ents of the EEG. They can be evaluated using the PSD
of such signals. For that purpose, the Welch method
was applied to each of the spindle trials [40]. In partic-
ular, we used a Hamming window with 50% overlap
and 212 as the number of points for the Fourier trans-
form of each window. Then, the PSD was divided by
the sumof its amplitude values, resulting in a normal-
ized PSD (PSDn) that can be interpreted as a probab-
ility density function. Finally, five different spectral
parameters were computed.

The first feature is the RP in the sigma band. This
measure was chosen for being the most extended fea-
ture both in characterizing spindles [41, 42] and in
their automatic detection [31–33]. It can be defined
as:

RP=

f2∑
f=f1

PSDn ( f ) , (1)

where f1 and f2 are the frequency limits, which were
set to 11 and 16 Hz, respectively (i.e. sigma band).

In order to assess not only the power, but also the
shape of the PSD function, SE was used. SE is a meas-
ure of the irregularity of the signal, with values closer
to 1 as the signal becomes more irregular, i.e. with a
more balanced distribution of spectral components
[19]. SE is formally defined as:
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Figure 2. Overall workflow of the study. EEG data were analyzed in parallel in three different ways: a comparative analysis, a
correlation analysis, and a classification analysis.

SE=
−1

ln(N)

f2∑
f=f1

PSDn ( f ) · ln(PSDn ( f )) , (2)

being N the number of points of the PSDn (i.e. 212).
Since the shape of the PSD function could have

relevant information to characterize spindles, f1 and
f2 were set to 1 and 30 Hz, respectively, defining the
SE for the whole spectrum. Nonetheless, we also con-
sidered important a special focus on the sigma band,
since the distribution of the spectral components in
that frequency range is relevant and most apparent
(see figure 1). For that reason, the SE was also com-
puted in such frequency band by setting f1 and f2 to
11 and 16Hz, respectively. It is important to note that
the frequency limits of the analyzed signal influence in
the final outcome of SE, since it depends on the num-
ber of the peaks in the analyzed spectrum, the degree
of dominance of a such peaks, and their peakedness
(relative to the bandwidth of the analyzed spectrum)
[43].

The oscillation speed of the spindle trials was
assessed by a summary measure termed MF. It is
defined as the frequency in which the PSD area is
divided in two equal halves [44]. The mathematical
definition of MF is:

1

2

f2∑
f=f1

PSDn ( f ) =
MF∑
f=f1

PSDn ( f ) , (3)

with f1 and f2 set to 1 and 30 Hz, respectively.
The last spectral feature computed in this study

was the PLE. The PSDofmost the EEG recordings can
be fairly adjusted to the decreasing exponential func-
tion, with a similar trend than the pink noise [25].
Thus, the PLE would correspond to the exponent of
that function:

PSDn ( f )∝ e−PLE · f. (4)

Despite being a spectral measure, it also provides
an estimation of the fractal organization of the signal,

where the faster (and also weaker) spectral compon-
ents are nested within the slower (and higher) ones
[25]. In simple terms, PLEmeasures the balance of the
high and low frequencies. It is defined as the absolute
value of the slope of the PSD regression line when it
is represented using a log–log scale (see figure 1 at the
bottom). Higher values of PLE mean strong domin-
ance of the lower frequencies over the higher frequen-
cies [25].

2.3.2. Temporal features
Spectral features can be complemented by time-
varying and nonlinear dynamics computed over the
signal in the time domain. Despite some of these
features have proven to be useful in other contexts
[45, 46], to the best of our knowledge none of them
have been previously used for characterizing sleep
spindles, with the exception of the TTV which has
only been recently applied [39].

The temporal measures were calculated after a
z-score normalization of each trial, thus minimizing
the variability on electrodes impedance. As for the
spectral measures (except for the RP and SE in the
sigma band), the temporal features were computed
in the broadband, thus providing a joint and com-
plementary vision of how neuronal dynamics change
due to the generation of spindles in the whole spec-
trum. The first one was the LZC, a nonparametric
measure of complexity related to the rate of occur-
rence of distinct subsequences (i.e. patterns) in a
given time series [47, 48]. Before calculating LZC, the
signal, x [i] , is binarized into a new sequence (P) using
a threshold (T) applied to the signal broadband, as
follows:

P= s(1) , s(2) , . . . , s(n) (5)

where

s(i) =

{
0, if x(i)< T
1, otherwise

. (6)
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We used a median as the threshold, since it
has been commonly applied in previous biomed-
ical studies because its robustness to outliers [49].
The sequence P is then scanned, and a complexity
index, c(m), increases every time a new subsequence
is found. Finally, LZC is normalized to reflect the
arising rate of new patterns in the sequence, as follows
[48]:

LZC=
c(m)

m/log2(m)
, (7)

where m is the length of the time series. Fur-
ther details of this algorithm are described in
the supplementary material (available online at
stacks.iop.org/JNE/18/036014/mmedia).

As the signal irregularity was previously estim-
ated from the spectral point of view, its quantific-
ation in the temporal domain was also considered.
Thus, sample entropy (SampEn) was computed for
all the time series. SampEn is a nonlinear measure
that quantifies the signal irregularity by estimating
the predictability of the time series through the eval-
uation of the presence of repetitive patterns. The
algorithm has two parameters that must be tuned
according to the nature of the data: the embedding
dimension (m) and the tolerance factor (r). As in pre-
vious studies and due to the good statistical reprodu-
cibility, we used: m= 1 and r= 0.25 times SD [46,
50]. Further details of this algorithm are detailed in
the supplementary material and in [51].

It is common to find spindles embedded in SO,
which usually show higher amplitude on average than
the rest of the EEG activity. Therefore, the quantific-
ation of the variability of the signal amplitude over
time can provide useful information for the charac-
terization of spindles and their proximities. This can
be analyzed using the CTM. It is computed selecting
a circular region of radius r in a first-order difference
plot. Then, the observations that fall inside the region
delimited by the circle are summed and divided by
the total number of observations [52]. In this study, a
radius r= 0.1 was heuristically selected.

It has been reported that the frequency of the
spindle is not constant throughout the spindle itself
[53], but that the center frequency can vary within
the sigma band, usually showing a decelerating pat-
tern (negative chirping) [54]. This is reflected in the
recurrence or periodicity of the signal that can be
quantified by the ACW [55]. The ACW accounts
for the full-width-at-half-maximum of the temporal
autocorrelation function, providing an index of the
periodicity of power fluctuations.

The last of the temporal measures used in this
study was the TTV. This measure was previously used
in the context of spindles, revealing the dependence of
the spindle variability with the frequency [39]. Here,
TTV was computed in the broadband (i.e. 1–30 Hz)
to summarize the spindle variability across trials. It is

calculated as the SD across trials normalized by the
SD at the spindle onset, as follows:

TTV [n] =
std(x [n])− std(x [0])

std(x [0])
(8)

where std(·) represents the SD and x [0] is the EEG sig-
nal at the spindle onset. Finally, the root mean square
of the TTV index was computed to provide a single
value per trial accounting for the variability degree,
named here as TTV energy:

TTVenergy =

√
1

N

∑
i

TTV[i]2. (9)

2.4. Classification procedure
A receiver operating-characteristic (ROC) analysis
was conducted to assess the degree of separability
between the pre-spindle and spindle periods [56]. It
was used along with a bootstrap procedure to accur-
ately estimate the optimum threshold from which
each extracted feature maximizes its discriminat-
ive ability between pre-spindle and spindle; thus,
meaning an initial point to evaluate new detection
algorithms hereafter. Accordingly, 1000 bootstrap
replicates of the same size as the number of all pre-
spindle and spindle epochs were formed for each
extracted feature. This number allows for a proper
estimation of the 95%confidence interval [57]. A uni-
form probability was used to select the values from
the original dataset and this resampling was conduc-
ted with replacement, as indicated by the bootstrap
0.632 method [58]. Therefore, for each replicate, sev-
eral values were selected more than once, whereas an
equal number were not selected. These not selected
values were used for the validation of results at each
iteration [58].

The threshold maximizing separability in each
replicate was obtained as the feature value that
reached the closest distance to (1, 0) of the ROC curve
[56]. The median of the 1000 thresholds obtained
for each feature were chosen as the optimum. Addi-
tionally, the discriminative ability of the features
was evaluated using sensitivity, specificity, accuracy,
and area under the ROC curve (AROC). It is well-
known, however, that the statistics obtained using
only the instances not included in bootstrap replic-
ates are downward estimations of the actual values
[58]. Therefore, for each statistic t at each iteration,
its valuewas computed considering both the instances
included and not included in the replicates as follows
[58]:

t= 0.632 · tni + 0.368 · ti, (10)

where ti and tni are the values of the statistic con-
sidered in the instances included and not included in
the corresponding replicate, respectively.
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Figure 3. Evolution over time of the spectral and temporal features. All temporal features show noticeable changes before the
spindle onset and even before the effect of the sliding window, that is,−0.25 s (sliding window of 0.5 s).

2.5. Statistical analysis
In a first step, Kolmogorov–Smirnov and Levene
tests were used to check for normality and homo-
scedasticity of the obtained parameters. In the case
where parametric assumptions were not met, Wil-
coxon signed-rank test was used for pairwise compar-
isons. The computed p-values were corrected using
the Benjamini–Hochberg procedure for controlling
false discovery rate (FDR) [59].

We also analyzed the relationship between pre-
spindle and spindle activity. Since we did not have
an established hypothesis whether the relationship
between the two neural activities would be linear or
not, we applied the Spearman’s rho test to estimate
the correlation.

All the signal processing, classification and stat-
istical analysis were applied using in-house MATLAB
(The MathWorks 2017b) scripts and the EEGLAB
toolbox [34].

3. Results

3.1. Spindle characterization
The temporal evolution of the frequency and time
domain features was estimated for the three chan-
nels over the midline (Fz, Cz, and Pz). Remarkably,
the spectral features show practically no changes dur-
ing the pre-spindle period (figure 3), except for the
PLEmeasure, which reveal a clear increase in its value
followed by a decrease just before the start of the
spindle; the latter being probably due to the begin-
ning of the SO that is not detected by the other spec-
tral measures. On the other hand, all the temporal
characteristics show, to a greater or lesser extent, a
pronounced change just before the spindle appears.
It is particularly interesting that these variations are
almost as noticeable as those produced during the
spindle period. As expected, spectral and temporal
features vary during the spindle period following the
neural dynamics produced by the spindle burst. As
the figure 3 shows, the most noticeable changes occur

in the first second after the spindle onset. In order to
assess whether this is due to most of the spindles last-
ing 1 s or less [39], or due to other effect, the same
analysis was repeated only with the spindles longer
than 1 s. Since the changes in the features are not only
restricted to the first second after the spindle onset
(see figure S1 in the supplementary material), this
suggests that the duration of the changes in the fea-
tures is directly related to the spindle duration [39].
For that reason, and to remove the bias introduced by
non-spindle-related activity, the spindle period was
limited to the time interval [0 1] s for the subsequent
analyses.

One can question whether the change between
the pre-spindle and spindle periods is statistically
significant for each of the characteristics or, on the
contrary, these changes can be considered negligible.
Figure 4 addresses this issue by subtracting the val-
ues of the features computed in the spindle period
by those computed during the pre-spindle interval.
As figure 4 shows, all the features achieve different
degrees of statistical significance in all the channels.
In terms of percentage changes (see figure 4 on the
left), RP in sigma band is the feature with the highest
changes, followed by both spectral and temporal fea-
tures such as MF and TTV energy.

In view of the statistical differences in most of
the features between pre-spindle and spindle periods,
we focused on the study of the possible association
between them. Thus, without a priori hypothesis of
the nature of the possible association, Spearman’s
rho test was applied for the correlation of the spec-
tral (figure 5) and, temporal (figure 6) features. In
general terms, despite overtly different pre-spindle
and spindle periods (figure 3), statistically significant
(p< 0.001) and strong (R 2 > 0.7) correlations were
found for eight features (four spectral and four tem-
poral features). Only the TTV did not obtain a sig-
nificant correlation at Cz. These results highlight a
strong association between the pre-spindle and the
spindle periods. This high degree of correlation does
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Figure 4. Changes in the neural activity following spindle generation. Radial plots (left) show the percentage of change
(logarithmic scale) between pre-spindle and spindle periods for spectral (upper row) and temporal (bottom row) measures
averaged across electrodes. These results are segregated across electrodes in the violin plots. Except for the autocorrelation
window, all measures show statistically significant differences in at least one electrode, highlighting that the spindle events change
the brain dynamics in several ways. Wilcoxon signed-rank test FDR-corrected: ∗p < 0.05, ∗∗p < 0.001.

Figure 5. Correlations of the pre-spindle and spindle spectral features. From left to right, correlations were performed for relative
power (RP), spectral entropy (SE) in the sigma band, SE in the broadband, median frequency (MF) and power law exponent
(PLE). All the spectral features show statistically significant relationships between pre-spindle and spindle periods. It accounts for
a more complex model than a merely burst in the sigma band, i.e. spindles. Spearman’s rank correlation: ∗p < 0.05, ∗∗p < 0.001.

not necessarily indicate a high degree of separability
between the two states, for which a classification ana-
lysis becomes necessary.

3.2. Separability between prespindle and spindle
periods
Although the correlation analysis provides us with
useful information on the degree of association
between the analyzed brain states, it only offers indir-
ect information on the degree of separability between
them. To further analyze this aspect, a ROC curve for
each feature was calculated by means of a bootstrap
approach for full-bandwidth spindles at Cz. Statistical
parameters independently computed for each feature
are shown in table 1. Curiously, SE in the sigma band
is the feature with the highest statistics in sensitivity
(76.90%), accuracy (75.74%) and AROC (0.81). RP
in sigma band was the feature with highest specificity
(75.77%). The performance of the temporal features
is similar to the spectral ones, with TTV reaching

a performance higher than 70% in all the statistics.
These results are in line with those performed in Fz
and Pz channels (see tables S1 and S2 in the supple-
mentary material for these result), suggesting that the
predictive capability of the pre-spindle period could
be generalizable to other regions of the cortex where
slow and fast spindles predominate, respectively.

4. Discussion

In the present study, we investigated the dynamics
of the brain processes involved in spindle generation
and its manifestation. The classical definition of a
spindle provided by the AASM manual [5] considers
them as bursts in the sigma band with a very specific
physiological context (i.e. the sleep stage). However,
this definition does not describe other important
electrophysiological characteristics (related with the
spatiotemporal dynamics) that could be important in
their identification. Previous studies already provided
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Figure 6. Correlations of the pre-spindle and spindle temporal features. From left to right, correlations were performed for
Lempel–Ziv complexity (LZC), sample entropy (SampEn), central tendency measure (CTM), autocorrelation window (ACW)
and trial-to-trial variability (TTV). All the temporal features show significant relationships between pre-spindle and spindle
periods in most of the electrodes. The correlation coefficients are even higher than those of the spectral features. It reinforces the
idea of the state dependence of the spindle on the neural dynamics previous the spindle onset. Spearman’s rank correlation:
∗p < 0.05, ∗∗p < 0.001.

some details on these dynamics, such as the charac-
teristic negative chirping of the spindles [54] or the
synchronization andmodulation between slow waves
and spindles [60]. We here explored new properties
taking advantage of the complementary vision of dif-
ferent characteristics (complexity, regularity, variab-
ility, etc) and comparing them to the classical feature
for spindle characterization, i.e. RP.

Results showed important changes in various fea-
tures evolving even before the spindle onset, and
flattening 1 s after the beginning of the spindle
(see figure 3) and probably linked with the mean
duration of the spindles [39]. These changes in the
brain dynamics showed significant differences both
in spectral and in temporal features (figure 4). We
then analyzed the correlation between the features
computed on the pre-spindle and those computed
on the spindle periods. We found high correlations
both for the spectral and the temporal measures
(see figures 5 and 6). Future studies should investig-
ate on the causes for this high degree of association,
despite overtly different pre-spindle and spindle peri-
ods (figure 3). Finally, we assessed the degree of separ-
ability between the pre-spindle and spindle periods.
Results showed that features other than power in the
sigma band, such as SE in sigma, could be jointly used
as plausible features for automatically detecting sleep
spindles, or potential therapeutic or experimental tar-
gets that could be leveraged to enhance spindle activ-
ity in healthy and clinical populations.

4.1. Methodological implications—usefulness in
sleep spindles detectors
Until now, the definition of the spindle according to
the AASM is based solely on the visually apparent
increase of the EEG power in the sigma band, which
results in an oscillation or burst at such a frequency

[5]. The sigma band partially overlaps with the alpha
band (8–13 Hz), common at rest with eyes closed
[61]. Therefore, alpha oscillations at, for example,
12 Hz are indistinguishable from slow spindles by
an automatic algorithm based solely on power. This
is a problem in all the automatic spindle detectors,
but becomes particularly problematic in clinical pop-
ulation with alpha intrusion during sleep, or dur-
ing micro-arousals due to e.g. sleep apnea, insom-
nia, or movement disorders [62]. An option to solve
this issue is to use heuristic techniques to differen-
tiate between the alpha band in resting awake and
a spindle event. For instance, Yon et al implemen-
ted an algorithm that corrects for ‘alpha effects’ by
removing slow spindles of frequency lower than 13Hz
when the power in parietal electrodes is higher than
the power in the central ones [33]. However, these
algorithms can lead to falsely rejecting slow spindles.
We here propose an alternative procedure for auto-
matic spindle detection, which would be based not
only on the power in the sigma band but on the com-
bination of different spectral and temporal features.
The results show a greater ability of SE to distinguish
between periods in which spindles are absent (pre-
spindle period) and periods with spindles, as com-
pared to the ability of the RP. Therefore, it is expec-
ted that a classifier combining both characteristics
will achieve greater performance than the traditional
detectors based onRP alone.On the basis of the previ-
ous ideas, this automatic detection could be addressed
through the a set of complementary characteristics in
methodologies based onmachine learning or through
algorithms that combine the information of different
measures.

One would think that, due to the similarity
between alpha oscillations and slow spindles, other
features different from the power in sigma band may
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also be unable to discern between both types of waves.
However, the negative chirping pattern in spindle
events reported by other studies [54, 63] suggests that,
while the power in the sigma band would not be
able to find this slowing pattern, other characterist-
ics can do so. Features, such as those related to the
oscillation speed (MF) or the change of periodicity
(ACW), help to support this hypothesis (see figure 3).
By applying a time-resolved procedure, MF shows a
decrease as the spindle fades, which is in line with the
shift toward slower frequencies. This is also suppor-
ted by the ACW.When the sleep spindle is generated,
the central lobe of the autocorrelation function nar-
rows, decreasing the ACW. Once the negative chirp-
ing occurs, the periodicity of the signal changes, res-
ulting in an increase in ACW. In fact, many of these
measurements help to recognize the type of spindle
(fast or slow) detected. Thus, the evolution curves of
figure 3 show a characteristic pattern in which the
Cz channel is between the Fz and Pz channels. This
is because spindles in the Cz channel were detected
in the broadband, while slow and fast spindles were
detected in Fz and Pz, respectively. Together, these
results show that the spindles show different qual-
itative attributes (not only restricted to amplitude
changes). These additional features could help in dis-
tinguishing the oscillatory patterns of alpha waves
(or other brain activity, for that matter), as well as
sleep spindles and their subtypes, thus, helping future
spindle detectors to obtain higher performance. Fur-
ther work is however necessary before confirming the
utility of specific features for novel automatic spindle
detectors.

The proposed features not only showed a likely
utility in ruling out alpha waves, but also a similar
ability (compared with RP in the sigma band) to dis-
criminate between pre-spindle and spindle periods
(such as TTV) or even showing higher classification
statistics (e.g. SE in the sigma band), as shown in
table 1. In fact, the conventional feature used in auto-
matic spindle detectors (i.e. the RP in sigma band)
only shows the highest statistics in specificity. Thus,
SE is proposed as higher-performance candidate than
RP for the detection of sleep spindles.

Except for PLE, the spectral features showed sim-
ilar patterns of temporal evolution, with a flat trend in
the pre-spindle and an increase for approximately 1 s
after the spindle onset (see figure 3). On the contrary,
both PLE and all temporal characteristics showed var-
ied patterns in their trends that affected both the
pre-spindle and spindle periods. This suggests that
these features provide different information to that
given by RP and SE. Therefore, although they have
not reached a classification performance as high as
RP or SE, it is well known that complementary fea-
tures help in predictions leading to increased preci-
sion [64]. Not only that, but even the features that
are presumably redundant with respect to RP could
improve the prediction, since they would reduce the

noise getting consequently better inter-class separa-
tion [64].

Taken together, the results suggest that automatic
spindle detectors could benefit from characteriza-
tion through complementary measures both to dis-
card alpha, and other oscillations and to increase
algorithm sensitivity.

4.2. Limitations and future work
New ideas and suggestions for future spindle detect-
ors were presented here. We demonstrate their
potential utility by means of correlation between pre-
spindle and spindle features, as well as by a classific-
ation procedure using ROCs. However, these ideas,
although valid, are an indirect evidence, being the
development of a new spindle detector based on the
joint characterization of spectral and temporal meas-
urements a more direct way to verify these findings.
Therefore, future work is necessary in this regard to
test the accuracy improvement due to each particular
feature.

Apart frommethodological suggestions for future
detectors, clinical implications related to possible
targets for boosting spindles were revealed. Non-
etheless, these findings are limited at the cortical
structures of the brain, since their activation was
assessed by EEG signals. The typical spatial resolu-
tion of overnight EEG recordings, usually from PSGs,
limit a source-level analysis. Simultaneous fMRI-EEG
recordings could partially solve this problem, which
would extend our findings about the strong state-
dependence to the spindle generators as the thal-
amus. Although the recordings probably could not be
overnight due to the discomfort of the fMRI equip-
ment, this is a potentially promising priority to pur-
sue it in future work.

Finally, we want to note that all the results of the
present study are subject to the reliability and idiosyn-
crasies of the spindle detector employed here. In par-
ticular, the parameters associated with the detector,
such as the threshold to consider the spindle onset,
could slightly affect to the exact moment in which
the spindle beginning is set. However, as previously
mentioned, this automatic spindle detector has been
widely validated by experts and non-experts, as well
as compared to other approaches (e.g. [31, 35, 36,
65, 66]). Therefore, we are reasonably confident that
the results are generalizable regardless of the spindle
detection method.

5. Conclusion

The current definition of spindles is only based on
power in the sigma band manifestation during the
spindle period itself. However, the hierarchical com-
plexity in which spindles are nested begins even
before they are generated and makes necessary to
characterize spindles in terms beyond power and
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beyond the spindle period itself. By means of a cor-
relation analysis and a classification procedure, the
features computed in this study to characterize brain
dynamics demonstrated their potential utility as pre-
dictors of spindles that could be applied to develop
new automatic detectors and novel therapeutic tar-
gets aimed at improvingmemory, cognition and sleep
quality in healthy, older, and clinical populations.
In this regard, the SE calculated on the sigma band
showed better accuracy and AROC than the power in
this band, suggesting that, physiologically speaking,
the temporal dynamics of the spindles are more com-
plex than a simple stable oscillatory burst.
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