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a b s t r a c t

Overnight pulse oximetry has shown usefulness to simplify obstructive sleep apnea (OSA) diagnosis
when combined with machine-learning approaches. However, the development and evaluation of a
single model with ability to reach high diagnostic performance in both community-based non-referral
and clinical referral cohorts are still pending. Since ensemble-learning algorithms are known for their
generalization ability, we propose a least-squares boosting (LSBoost) model aimed at estimating the
apnea–hypopnea index (AHI), as the correlate clinical measure of disease severity. A thorough charac-
terization of 8,762 nocturnal blood-oxygen saturation signals (SpO2) obtained at home was conducted
to extract the oximetric information subsequently used in the training, validation, and test stages.
The estimated AHI derived from our model achieved high diagnostic ability in both referral and non-
referral cohorts reaching intra-class correlation coefficients within 0.889–0.924, and Cohen’s κ within
0.478–0.663 when considering the four OSA severity categories. These resulted in accuracies ranging
87.2%–96.6%, 81.1%–87.6%, and 91.6%–94.6% when assessing the three typical AHI severity thresholds,
5 events/hour (e/h), 15 e/h, and 30 e/h, respectively. Our model also revealed the importance of the
SpO2 predictors, thereby minimizing the ‘black box’ perception traditionally attributed to the machine-
learning approaches. Furthermore, a decision curve analysis emphasized the clinical usefulness of our
proposal. Therefore, we conclude that the LSBoost-based model can foster development of clinically
applicable and cost saving protocols for detection of patients attending primary care services, or to
avoid full polysomnography in specialized sleep facilities, thus demonstrating the diagnostic usefulness
of SpO2 signals obtained at home.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Simplification of obstructive sleep apnea (OSA) diagnosis has
ecome a major research priority in the past years. The OSA
iagnostic gold standard, the nocturnal polysomnography (PSG),
s intended to detect the typical overnight recurrence of apneas
complete cessations of airflow) and hypopneas (significant re-
uctions of airflow) [1], which lead to inadequate gas-exchange,
amely intermittent hypoxia, as well as fragmented sleep [2].
hese events are associated in a severity-dependent fashion with
number of cardiovascular and metabolic morbidities [3], with

∗ Correspondence to: ETSI Telecomunicación, Campus Miguel Delibes, Paseo
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568-4946/© 2021 Elsevier B.V. All rights reserved.
frequency in co-morbidities estimated in 46.4%–59.5% for hyper-
tension [4,5], 29.0%–56.8% for heart diseases [5,6], and 14.7%–
19.5% for diabetes mellitus [4,5]. Moreover, high presence of
other respiratory (6.4%–16.0%) and psychiatric (5.0%–14.5%) dis-
eases has been also reported [4,6]. The overnight application
of continuous positive airway pressure (CPAP) is the first and
most widely used choice for treatment. It has been shown to
reduce apneic events, blood pressure, and daytime somnolence,
as well as improve some physical and sleep-related quality of
life indicators [7]. However, PSG complexity, high costs, intensive
labor, and patient discomfort [8–10], along with the large number
of undiagnosed OSA cases estimated at nearly 1 billion world-
wide [11], lead to limited availability of facilities and delayed
access to diagnosis and treatment.

Studies predicated on the use of the single-channel blood

oxygen saturation signal (SpO2) have been popular approaches to
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overcome these PSG drawbacks [12,13]. SpO2 is easily recorded
uring the night using a pulse-oximeter, and the potential devel-
pment of automated analyses contrasts with the labor-intensive
isual inspection of multiple channels required in PSG [1]. The
romising results of a combination of automatically extracted
nformation from pulse oximetry data coupled with machine-
earning approaches suggest that SpO2 could serve as a suitable
nd valid candidate to simplify OSA diagnosis [14–22]. More
pecifically, recent studies have shown the usefulness of combin-
ng information from unsupervised at-home overnight oximetry
ith ensemble-learning methodologies [17,18], but have also ex-
osed several serious limitations. Among these, there is a need for
eeper evaluation of the SpO2 information using additional ana-

lytical approaches, which was coupled with inability to generalize
the findings due to relatively restricted datasets. Furthermore,
none of the studies evaluated the diagnostic ability of their pre-
dictive models in both non-referral and clinical referral cohorts,
i.e., in community dwellers and in symptomatic patients being
referred to sleep specialists by their primary care physicians due
to clinical suspicion of OSA, respectively.

The current study focused on automatically detecting OSA
using at-home oximetry. We hypothesized that the information
contained in the overnight SpO2 signal can be used to diagnose
OSA in all comers, i.e., including both referral and non-referral
cohorts. Accordingly, our main objective was to obtain, and eval-
uate in both types of cohorts, a novel unified approach that
can accurately estimate the apnea–hypopnea index (AHI), as it
is commonly used to determine the presence of OSA and its
severity [1]. Thus, our first step was to expand the analytical
approaches previously applied to the SpO2 signal to further char-
acterize it. Then, we applied the least-squares boosting (LSBoost)
ensemble-learning algorithm with stumps to derive a regression
model that allows for estimation of the AHI from the SpO2 in-
ormation [23]. Ensemble-learning has been applied and shown
romise in a wide range of fields, including OSA detection [17,
8,24–27]. Here, we use LSBoost for the first time with this
urpose as it retains the robustness against overfitting of boosting
nsemble-learning algorithms, and has proven preserved effec-
iveness in regression problems without the cost of intensive
omputation requirements [28,29]. Additionally, the combined
se of LSBoost and stumps as base classifiers enable us to explain
ts predictions based on the relative importance of the SpO2
ata used [23,30], thereby maximizing the interpretability of
he model. Finally, the LSBoost regression model was assessed
n terms of agreement with the actual AHI. Furthermore, the
greement between the OSA severity categories derived from the
stimated AHI and the actual AHI was also evaluated. This latter
valuation included the diagnostic performance in common AHI
hresholds as well as a decision curve analysis, thus providing a
ore complete view of the potential clinical usefulness of our
roposal.
We think that a model that accurately assigns an estimate of

HI as a correlated of OSA severity in cohorts with both high
clinical-referred) and low (community-based) pre-test probabil-
ty would be of great value to help physicians in their decisions.
ndeed, such tool would enable its use in both primary and
pecialized healthcare centers, with increased efficiency, reduced
osts, and most importantly maximal benefit for patients when
ombined with e-health systems [31,32].

. Materials and methods

Next subsections detail the databases and methods used in
ur study. Fig. 1 shows a general flowchart of the methodology
onducted.
2

2.1. Databases description and validation strategy

Two distinctly different databases were included in the study.
Subjects and data from the Sleep Heart Health Study (SHHS)
were used as a community-based non-referral sample [32,33].
SHHS is a publicly available dataset in which subjects are at least
40 years old and were recruited from several previously estab-
lished cohorts aimed at assessing cardiovascular risks. A total
of 5,804 individuals underwent unattended at-home overnight
PSG, to then assess whether OSA is an independent risk factor
for developing cardiovascular morbidity [33]. As part of these
PSGs, data from 5,793 SpO2 recordings were available for this
study (SHHS1 subset). A follow-up PSG was then administered
to 2,647 subjects from the original sample five years later, using
the same procedures (SHHS2 subset) [33]. These PSGs and their
corresponding SpO2 recordings were also exploited. Further de-
tails on the composition and characteristics of the SHHS dataset
can be obtained from the original studies [33,34].

A second dataset, a clinical cohort, was composed of 322 adult
symptomatic patients referred to the sleep unit of the Rio Hortega
University Hospital (Valladolid, Spain) due to clinical suspicion of
OSA (RHUH dataset). They all underwent at-home PSG (Embletta
MPR with the ST + proxy, Embla Systems, Natus Medical Inc.
CA, USA) and a simultaneous overnight portable oximetry (Nonin
WristOx2 3150, Nonin Medical, Inc,MN, USA), from which the
SpO2 recordings were obtained. The Ethics and Clinical Research
Committee of the Hospital approved the protocol (CEIC 47/16).

In both samples, apneas and hypopneas were scored by spe-
cialized personnel following the current recommendations of the
American Academy of Sleep Medicine (AASM) [1,35], based on
which, AHI was determined for each subject, and subsequently
classified into one of the four OSA severity categories: no OSA
(AHI < 5 events/hour), mild OSA (5 e/h ≤ AHI < 15 e/h), mod-
erate OSA (15 e/h ≤ AHI < 30 e/h), and severe OSA (AHI ≥ 30
/h).
The datasets were divided into five groups, as delineated in

ig. 2 and in accordance with following criteria:

(i) The training and validation sets (SHHS1tr and SHHS1v , respec-
tively) are only composed of subjects from the SHHS1 subset
that was not a participant in the follow-up sleep study 5 years
later. Thus, we avoid the bias caused by the inclusion of
recordings from the same subject in the development and
the testing of the model.

(ii) SHHS1tr and SHHS1v are composed of the same number of
subjects in each of the four OSA severity categories. This
approach served to ensure balanced distribution of severity
groups, thereby not favoring a model with biased final
diagnosis towards one of the categories.

(iii) There are three test sets, two non-referral and one referral.
SHHS1t (non-referral), composed of those subjects from
SHHS1 not included in SHHS1tr or SHHS1v; all the record-
ings from SHHS2 subset (non-referral); and all the patients
from the Rio Hortega University Hospital (RHUH, clinical
referral).

Table 1 summarizes sociodemographic and clinical data of the
ubjects. As expected, all non-referral groups showed statistically
ignificant differences in AHI, age, sex, and race distribution with
hose in referral RHUH cohort (p < 0.01 after Bonferroni’s correc-
ion). Furthermore, all non-referral groups except SHHS2 showed
tatistically significant differences with referral RHUH in body
ass index (BMI). Minor differences were found in the proportion
f black subjects of SHHS1tr compared with SHHS1t and SHHS2,
s well as of SHHS1v compared with SHHS2. Finally, all groups
howed statistically significant differences in age with SHHS2, as
nticipated by the SHHS study design.
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Fig. 1. Flowchart with the main methodological steps of the study. At-home overnight SpO2 recordings are pre-processed and comprehensively characterized
sing different analytical approaches. The features extracted from SpO2 are used to train multiple LSBoost-based regression models with ability to estimate AHI. The
alidation step is used to select the model with the optimum hyperparameters, which is subsequently assessed in independent test sets from both non-referral and
eferral cohorts. The AHI estimated by this selected model is used to measure the agreement with actual AHI, as well as the actual OSA severity categories that
re commonly derived from it. Its diagnostic performance is also assessed, and decision curves are provided. Finally, the relative importance of each SpO2 extracted
eature in the AHI estimation is analyzed.
Fig. 2. Distribution of the subjects involved in the study to conduct the validation strategy. The total number of subjects included in SHHS1tror SHHS1v is limited
y the criterion of same size of the four OSAS severity degrees and the size of the OSAS degree less represented (no OSAS: 526 subjects). Among those subjects
ncluded in SHHS1tr or SHHS1v , 75% (1,576) were heuristically assigned to training and 25% (528) to validation. The remaining subjects from SHHS1 (3,689), all
SHHS2 (2,647), and all RHUH (322), were assigned to test sets. SHHS: Sleep Heart Health Study dataset; RHUH: Rio Hortega University Hospital dataset.
Table 1
Sociodemographic and clinical data of each subgroup. Median and interquartile range for Age, BMI, and AHI (p-values obtained with Mann–Whitney non-parametric
U test). Number of subjects for males (M), females (F), white (W), black (B), and other (O) (p-values obtained with Fisher’s exact test). Statistical differences in race
refer only to the proportion of black subjects, as no differences were found in the proportion of the ‘other’ category. Category names for race were those originally
reported in the SHHS dataset.
Data SHHS1tr

(N = 1,576)
SHHS1v
(N = 528)

SHHS1t
(N = 3,689)

SHHS2
(N = 2,647)

RHUH
(N = 322)

p<0.01∗

Age (years) 63.0
(55.0, 73.0)

64.5
(55.0, 74.0)

63.0
(55.0, 71.0)

68.0
(60.0, 76.0)

57.0
(46.0, 66.0)

c,d,f,g,h,i,j

Sex (M/F) 811/765 255/273 1,967/1,722 1,422/1,225 220/102 d,g,i,j

Race (W/B/O) 1,248/174/118 432/62/34 3,183/278/228 2,307/181/159 322/0/0 b,c,d,f,g,i,j

BMI (kg/m2) 27.4
(24.5, 30.8)

27.1
(24.5, 30.5)

27.5
(24.7, 30.7)

27.7
(24.8, 31.1)

28.4
(25.8, 32.1)

d,g,i

AHI (e/h) 15.0
(5.0, 30.0)

15.0
(5.0, 29.8)

12.6
(7.4, 21.5)

13.5
(6.8, 24.6)

26.2
(12.9, 46.6)

d,g,i,j

AHI: apnea–hypopnea index, BMI: body mass index, ∗p-value after Bonferroni’s correction, aSHHS1tr vs. SHHS1v , bSHHS1tr vs. SHHS1t , cSHHS1tr vs. SHHS2, dSHHS1tr
s. RHUH, eSHHS1v vs. SHHS1t , fSHHS1v vs. SHHS2, gSHHS1v vs. RHUH, hSHHS1t vs. SHHS2, iSHHS1t vs. RHUH, jSHHS2 vs. RHUH.
3
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2.2. Information obtained from the SpO2 signal

All SpO2 signals were acquired at a sampling rate of 1 Hz. Arti-
acts were removed as reported in previous studies [17,36]. Up to
2 features were obtained to conduct a thorough characterization
rom different approaches, thus minimizing the limitations of
revious studies (see Table 2) [17,18]. Three different analytical
ethodologies were conducted: classic oximetry-based clinical

eatures, non-clinical features in time domain (including non-
inear analysis), and non-clinical features in frequency domain. All
hese features were proposed because they can help characterize
nformation derived from biomedical signals [14,17,24,36–49].
owever, they have never been used concurrently. Moreover,
btaining a higher number of features than in previous works
avors the performance of the LSBoost approach adopted in this
tudy [29].

.3. Least-squares boosting algorithm

LSBoost is an ensemble-learning boosting algorithm intended
or estimation of a continuous target variable y [23]. Its output
is obtained as a combination of estimations from several base
learners (h). These are sequentially obtained so that each new
learner is trained to fit the remaining residual error (ỹm) after
ombining the outputs from all previous learners. [29] Formally,
he algorithm can be described as follows [23,29]:

(i) Set m = 0 and initialize the estimated output f 0 (x).
(ii) Increase m by 1 and compute the residuals ỹmi = yi −

f m−1 (xi) , i = 1, 2, . . . ,N
(iii) Fit the residuals using least squares loss function along

with learner h and the predictors for each subject xi:
(υm, am) = argmina,υ

∑N
i=1

[
ỹmi − υh(xi; a)

]2, with a being
the set of parameters of h, and υ a regularization factor
ranging 0 < υ ≤ 1.

(iv) Update f m (x) = f m−1 (x) + υmh(x; am).
(v) Iterate (ii) to (iv) until m = M , being M the maximum

number of learners to be used.

In the current study, y was the actual AHI, f m(x) was the es-
timated AHI, xi the set of features extracted from each i SpO2
recording, and N the number of recordings in the training set.
Both M and υ are tuning parameters [17]. We used our validation
group (SHHS1v) for this purpose. Regression trees of one parent
and two children nodes (stumps) were used as the base learn-
ers h. In this way, every new h(x; am) is a function of a single
predictive variable [28,29], thus conducting a default feature se-
lection procedure at each iteration. The relative importance Î2j of
a variable xj can be estimated on the basis of its squared error
empirical improvement along all the trees in which it has been
involved [23,30]:

Î2j =
1
M

M∑
m=1

MSEm(xj) · wm − (MSE l
m(xj) · w

l
m +MSEr

m(xj) · w
r
m), (1)

where MSEm is the mean squared error for the m stump associ-
ated to xj, wm a weight accounting for the parent node proba-
bility, and l − r denoting the corresponding parameters for the
two child nodes. The relative Î2j values of the features in this
study were subsequently scaled to sum 100, with higher values
denoting a higher influence in the ensemble output [51].

2.4. Statistical analyses

The agreement between the actual AHI and the AHI estimated
by our regression model was evaluated by means of the intra-
class correlation coefficient (ICC) and Bland–Altman plots [52,53].
4

Furthermore, as four severity categories based on the AHI are
commonly used by clinicians in OSA context (no OSA: AHI <
5 e/h; mild: 5 e/h ≤ AHI < 15 e/h; moderate: 15 e/h ≤ AHI

30 e/h; and severe: 30 e/h ≤ AHI), Cohen’s kappa, κ , and
confusion matrices were used to measure agreement between
the actual OSA-severity categories and those obtained from our
AHI estimation [54]. The diagnostic usefulness of our model was
also assessed in each of the common thresholds used to set the
OSA-severity degrees: 5 e/h, 15 e/h, and 30 e/h. This was con-
ducted in terms of sensitivity (Se, percentage of subjects with a
true diagnosis above the corresponding threshold that are rightly
classified by our model), specificity (Sp, percentage of subjects
with a true diagnosis below the corresponding threshold that are
rightly classified by our model), accuracy (Acc, total percentage
of subjects rightly classified by our model), positive predictive
value (PPV, percentage of subjects with a true diagnosis above the
corresponding threshold among all those that our model classify
above that threshold), negative predictive value (NPV, percentage
of subjects with a true diagnosis below the corresponding thresh-
old among all those that our test classify below that threshold),
positive likelihood ratio (LR+, ratio of the true positive rate to
the false positive rate), and negative likelihood ratio (LR-, ratio of
the false negative rate to the true negative rate). The diagnostic
metrics for these thresholds can be computed as follows:

Se =
TP

TP + FN
∗ 100, (2)

Sp =
TN

TN + FP
∗ 100, (3)

Acc =
TP + TN

TP + TN + FP + FN
∗ 100, (4)

PPV =
TP

TP + FP
∗ 100, (5)

NPV =
TN

TN + FN
∗ 100, (6)

LR+ =
Se

1 − Sp
, (7)

LR− =
1 − Se
Sp

, (8)

where TP, TN, FP, and FN are true positives, true negatives, false
positives, and false negatives for each threshold, respectively.
Decision curves were also used to further assess the clinical value
of our proposal [55,56]. Accordingly, net benefit (NB) for each
possible ‘‘threshold probability’’ was computed as follows [55,56]:

NB =
TP

TP + FP + TN + FN
−

FP
TP + FP + TN + FN

(
pt

1 − pt

)
, (9)

where pt is the threshold probability considered at each case.
Moreover, as our model is aimed at estimating a continuous
variable, logistic regression was applied prior to the decision
curve analysis to transform the estimated AHI into a probabil-
ity [57]. Finally, a two-tailed p-value less than 0.01 was con-
sidered as achieving statistical significance. MatlabTM 2018b and
2020b were used to conduct all the analyses of this study.

3. Results

3.1. Model training and validation

The original paper presenting the LSBoost method established
m and υ as tuning hyperparameters [23]. It also offered the
ranges among they were more likely to produce lower error rates.
The main idea, confirmed in subsequent studies [28,29], was to
choose a low υ value and vary m. Here, we chose to evaluate the
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Table 2
Features extracted from each of the overnight SpO2 recordings.
Features Description

Classic clinical features
ODI3 3% oxygen desaturation index. Number of 3% desaturation events per hour of sleep. [36]

CT90 Overnight cumulative time of blood oxygen saturation under 90%. [36]

Statistics and Non-linear measures in Time Domain
Mt1-Mt4 First (mean), second (standard deviation), third (skewness), and fourth (kurtosis) statistical

moments of the overnight signals in time domain. [14]

CTM Central tendency measure to measure variability in a time series. [44,49]

LZC Lempel–Ziv complexity to measure the complexity degree of a time series. [37,47]

SampEn Sample entropy to measure irregularity in a time series. [38,45]

msEnt

Multiscale entropy analysis, which extends SampEn to different time scales. [39,46]
Five features were extracted from up to 50 scales:
– msEntmax: the maximum SampEn value of the scales.
– msEntscale: the scale at which the maximum SampEn value is reached.
– msEntarea: the area under the curve formed by the SampEn values of all the scales.
– msEntslp1: the average slope of the lower scales (1 to 23).
– msEntslp2: the average slope of the higher scales (24 to 50).

Frequency Domain Analysis
Mf1-Mf4 First (mean), second (standard deviation), third (skewness), and fourth (kurtosis) statistical

moments of the full spectrum. [14]

SpecEn Spectral entropy to measure the full spectrum flatness. [17,40]

MF Median frequency to estimate the distribution of the power of the full spectrum. [17]

ED Euclidian distance to directly estimate the statistical distance between the full spectrum and
a uniform distribution. [41,48]

WD Wootter’s distance to estimate the statistical distance between the full spectrum and a
uniform distribution based on counting all the intermediate states between the distributions.
[24,42]

MA∗

BOI Maximum of the spectrum amplitude within the SpO2 band of interest.

mABOI Minimum of the spectrum amplitude within the SpO2 band of interest.

Mf1BOI -Mf4BOI First, second, third, and fourth statistical moment of the spectral band of interest. [17]

SpecEnBOI Spectral entropy applied to the spectral band of interest. [17,40]

MF BOI Median frequency applied to the spectral band of interest. [17]

EDBOI Euclidian distance applied to the spectral band of interest. [41,48]

WDBOI Wootter’s distance applied to the spectral band of interest. [24,42]

The OSA-related band of interest (BOI) in the SpO2 signal comprises 0.014–0.033 Hz (events lasting 30–70 seconds) [14,50].
same low υ values than in the original paper, i.e., υ = 0.031,
0.062, and 0.125 [23]. Also, it was shown that evaluating m values
beyond 200 produced models with very similar behaviors [23].
Hence, we also chose to vary m from 1 to 200 in steps of 1. All the
models resulting from the combination of the different values of
υ and m were obtained from the training group and subsequently
evaluated in the validation group to choose the optimum (υ ,
m) pair. Fig. 3 shows the results of hyperparameter tuning on
SHHS1v. According to Cohen’s κ , the optimum values for υ and
m were 0.125 and 199, respectively.

Each of the 199 regression stumps used a single feature to
provide its contribution to the final ensemble output. Twenty five
out of the 32 extracted features were used at least once. However,
9 of them (ODI3,M4t,M1f BOI ,MABOI ,msEntscale, LZC,msEntarea,WD,
and SampEn) were selected 132 times and gathered 99.0% of the
total relative importance Î2, thus highlighting the relevance of all
the analytical approaches conducted (clinical features, statistics
and non-linear features, and frequency domain analysis), as well
as the minimum effect on the final AHI estimation of 23 features.
Moreover, ODI3 alone accounted for 85.7% of Î2 and was selected
43 times.

3.2. Agreement and diagnostic performance

Fig. 4 shows the Bland–Altman plots of actual and estimated
AHIs for the three test sets: SHHS1t, SHHS2, and RHUH. The
smallest bias can be observed for SHHS1 , whereas SHHS2 and
t

5

RHUH show mild overestimation and underestimation of actual
AHI, respectively. Furthermore, ICC is embedded in each corre-
sponding plot, showing high agreement in the three groups. The
referral dataset reached slightly higher ICC (0.924 RHUH) than the
two non-referral ones (0.900 SHHS1t; 0.889 SHHS2).

Fig. 5 shows the confusion matrices that compare the ac-
tual OSA severity degrees and the corresponding assignation
using the estimated AHI. Cumulated accuracy in the four classes
reached 70.02%, 62.30%, and 77.02% for SHHS1t, SHHS2, and
RHUH datasets, respectively. Moreover, their confusion matrices
correspond to 0.561, 0.478, and 0.663 four-class κ . An increased
proportion of subjects correctly diagnosed can be observed in
the main diagonal of SHHS1t as OSA severity increases, with a
good balance between overestimate and underestimate findings,
as anticipated by the corresponding Bland–Altman plot. In con-
trast, the confusion matrix from SHHS2 shows a tendency for
overestimation that decreases with the severity degree. Finally,
the confusion matrix from RHUH shows small overestimation
and underestimation for no OSA and moderate OSA, respectively,
yet not obscuring the very high diagnostic ability reached in the
referral database.

Table 3 displays the diagnostic statistics for each AHI threshold
that defines OSA severity. They are directly derived from the
confusion matrices in Fig. 5. Accuracies (Acc) are above 80% in all
cases, and only 15 e/h in SHHS2 is below 85%. Results in SHHS1t
are generally higher than in SHHS2 because of remarkable higher
Sp values at the cost of mild lower Se. Actually, Sp values in
SHHS2 are relatively low for 5 e/h and 15 e/h, in accordance with
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Fig. 3. Number of base learners (m) and regularization parameter (υ) tuned according to Cohen’s κ in the validation set SHHS1v.
Fig. 4. Bland–Altman plots and intra-class correlation coefficient (ICC) of the test sets (A) SHHS1t, (B) SHHS2, and (C) RHUH. SHHS1t shows a small bias (mean
0.31) and the tiniest difference in the 95% confidence interval (23.35). Higher overestimation (mean = 3.05) and 95% confidence interval (27.04) is reached in

HHS2. Actual AHI presents a small underestimation in RHUH (mean = −3.37), which also reaches the widest 95% confidence interval (32.59).
Fig. 5. Confusion matrices with the true OSA severity classes against the predicted ones for (A) SHHS1t, (B) SHHS2, and (C) RHUH. The main diagonal indicates
he number and proportion of rightly assigned subjects for each severity degree, whereas the remaining cells are misclassified subjects. Darker colors are shown as
ore proportion of subjects of the same actual class are assigned to a cell.
able 3
iagnostic performance on the clinical AHI thresholds used to demarcate OSA severity categories (5 e/h, 15 e/h, and 30 e/h).

SHHS1t SHHS2 RHUH

5 e/h 15 e/h 30 e/h 5 e/h 15 e/h 30 e/h 5 e/h 15 e/h 30 e/h

Se (%) 93.77 87.03 82.21 98.70 95.17 89.83 99.00 85.47 86.49
Sp (%) 58.28 84.06 96.34 32.80 69.50 92.01 63.64 93.18 96.55
PPV (%) 93.89 79.26 76.26 87.44 72.16 71.99 97.38 97.09 95.52
NPV (%) 58.16 90.25 97.43 84.36 95.54 97.54 82.35 70.69 89.36
LR+ 2.25 5.46 22.46 1.47 3.12 11.24 2.72 12.53 25.07
LR- 0.11 0.15 0.18 0.04 0.07 0.11 0.02 0.16 0.14
Acc (%) 89.18 85.28 94.58 87.23 81.14 91.61 96.58 87.58 91.93

Acc: accuracy, LR+/LR-: positive and negative likelihood ratio, PPV/NPV: positive and negative predictive value, Se/Sp: sensitivity and specificity.
6
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the overestimated AHI scenario previously observed. The highest
diagnostic performance, however, is obtained in the clinically
referred high pre-test probability database RHUH, reaching the
most favorable values for OSA diagnosis in most of the statistics.

3.3. Decision curve analysis

Fig. 6 A shows the decision curves corresponding to the SHHS1t
and SHHS2 groups, i.e., the non-referral subjects. Solid lines
represent the net benefit curves of our LSBoost-based model. In
a non-referral cohort, one would expect to use our proposal as a
screening test to send patients to the standard diagnostic test, the
PSG. Therefore, our proposal is compared to the option of sending
all subjects to the PSG, (colored thin lines with triangles), and
sending no one to PSG (gray horizontal thin line with triangles),
since PSG is the next natural intervention for non-referral sub-
jects. The curve shows higher net benefit for our model than for
sending no one to the PSG for almost all probability thresholds.
The model also shows higher net benefit than sending all subjects
to PSG from the threshold probability = 0.39 onwards.

Fig. 6B represents the decision curves corresponding to the
HUH group, i.e., the referral subjects. As they have previous
uspicious of OSA, this is a high OSA pre-test probability group.
herefore, the LSBoost-based model (colored solid lines) is com-
ared to ‘treat all’ subjects for OSA and ‘treat no one’ for OSA
gray lines), since treatment is the next natural intervention for
hese subjects. As in the previous case, our model (purple solid
ine) reaches higher net benefit than ‘treat no one’, for all proba-
ility thresholds, and also higher net benefit than ‘treat all’ from
.39 probability threshold onwards. In addition, we compare our
odel to the performance of the PSG (colored dashed lines). PSG
roduces no false positive results if no other drawback is con-
idered. Consequently, its net benefit is maximum, as reflected
y the dashed purple line at the top of the graphic. However,
q. (9) can be reformulated to account for other issues, such
s health risk or economic costs, by subtracting a penalty term
alled ‘‘test harm’’, (NBtest-harm = NB-‘‘test arm’’) [55]. The test
arm represents the negative implications caused by taking the
est (i.e, conducting the intervention) and can be explained as
he reciprocal of the number of tests that a clinician is willing
o conduct in order to find one true positive subject provided
hat the test were perfectly accurate [56,58]. The pink and blue
ashed lines represent the PSG performance if a clinician would
o no more than 2 and 5 PSGs to identify one true positive, i.e., if
he test harm is 1/2 and 1/5, respectively. To compare our model
ith PSG, we assumed that, in the absence of any other harm, a
linician would do more of our tests in the same proportion as
he decreased cost of at-home oximetry with respect to standard
SG. Previous studies reported that standard PSG (810.8 $/test) is
.87 times more expensive than at-home single-channel oximetry
209.2 $/test) [59], which is a sustained proportion over time [60].
ccordingly, the pink and blue solid lines represent the net ben-
fit of our model when the test harm is 1/(2 ∗ 3.87) and 1/(5
3.87). As observed, the orange rectangles represent the upper

imits of the range in which our model achieves higher net benefit
han PSG. This range is larger as less tests a clinician is willing to
onduct to find a true positive.
Finally, the black rectangles represent the bottom limits of the

ange in which our model shows higher net benefit than the ‘treat
ll’ strategy. For each PSG ‘test harm’ different from 0, the range
etween the black and orange rectangles are the ranges in which
ur model achieves higher net benefit than all other options:
.64–0.79 for a PSG test harm of 1/5 and 0.81–1.00 for a PSG test
arm of 1/2.
7

3.4. Performance of other machine-learning approaches

Table 4 shows the performance of 3 additional machine-
learning models that were obtained using the same training/
validation/test strategy. Two of them are regression approaches
(regression trees, RT; and regression support vector machines,
SVMr), and another one a multi-class approach (multiclass adap-
tive boosting, AdaBoost.M2). These methods have shown its use-
fulness in several biomedical signal processing problems, includ-
ing OSA automatic detection [17,18,24,61]. Consequently, they
are used for comparison purposes. As observed, the other models
outperformed our proposal in some discrete statistics (values in
bold) when evaluating individual databases or AHI thresholds
(SVMr in 27 out of 63 statistics, and AdaBoost.M2 and RT in 23).
However, when considering the overall performance measure-
ments (four-class accuracy and Cohen’s κ) of our LSBoost model,
it clearly outperformed the other methods in our three test sets
(SHHS1t, SHHS2, and RHUH), except for the κ value of the RT
odel in SHHS2. In this unique case our LSBoost model reached
= 0.478 and RT reached κ = 0.479. Moreover, in 23 out of

27 of the accuracies corresponding to each AHI threshold our
proposal also reached the highest values. These figures highlight
the superiority of our proposal comparing to the models from the
other machine-learning approaches.

4. Discussion

In this study, we have accomplished substantial advances in
SpO2 characterization by extracting up to 32 overnight features
from different analytical approaches. They serve to develop a
novel OSA-specific LSBoost-based model that has the ability to
accurately estimate AHI from single-channel oximetry data ob-
tained in the patients’ home. Furthermore, this model displays a
high level of agreement with the actual PSG-derived AHI, and high
diagnostic performance in both referral and non-referral cohorts.
Our analytical approaches not only allowed us to develop a clin-
ically useful tool, but also explain the model through the SpO2
data used by each of the 199 base classifiers of the ensemble,
thus decreasing the common ‘black box’ perception of automatic
models.

4.1. Explaining the AHI estimation

ODI3 accounted for 85.7% of the relative importance, i.e., the
contribution to the final overall AHI estimation. This is consistent
with previous studies in which ODI3 reflected the principal OSA-
related informative component regarding SpO2 [17,43]. However,
ODI3 alone underestimates AHI as not all apneic events lead
to a desaturation [17,18,35]. Underestimation is not generally
observed in our model, suggesting that the information contained
in the remaining features is counteracting this effect. This would
be supported by the similarity between the relative importance
accounted by these features (14.3%) and the average amount of
apneic events not accompanied by a 3% desaturation in SHHS
dataset (11.5%) [18]. Most of this remaining relative importance
is composed of the eight features mentioned in Results section,
which are related to signal complexity (LZC, msEntarea), irreg-
ularity (mSEntscale, SampEn), SpO2 values distribution over time
(M4t) and frequencies (WD), and the number and amplitude of
recursive desaturations lasting 30 to 70 s irrespective of specific
percentages of decrease (M1f BOI , MABOI ). Therefore, we posit that
the overnight patterns characterized by these features reflect ad-
ditional information about OSA, regardless of whether it is related
to other events involved in AHI definition (e.g. arousals) or not
(e.g. hypoxic burden). However, further research will be required
to define the specific relationships between these parameters and
other OSA-related effects.



G.C. Gutiérrez-Tobal, D. Álvarez, F. Vaquerizo-Villar et al. Applied Soft Computing 111 (2021) 107827

p
p
b

t
t
2
w
o
d

Fig. 6. Decision curves for the groups (A) SHHS1t and SHHS2, and (B) RHUH. A logistic regression transformation was conducted on the AHI to present it as the
robability of having any OSA degree. In panel (A), the LSBoost-based model is compared to the strategy of ‘‘sending all to PSG’’ and ‘‘sending no one to PSG’’. In
anel B the model is compared to ‘‘sending all to treatment’’, ‘‘sending no one to treatment’’, and the benefit of PSG under several ‘‘test harm’’ effects. Correspondence
etween threshold probability and the AHI thresholds 5 e/h, 15 e/h and 30 e/h are also shown.
Table 4
Performance of three machine-learning alternatives in our test sets.

SHHS1t SHHS2 RHUH

5 e/h 15 e/h 30 e/h 5 e/h 15 e/h 30 e/h 5 e/h 15 e/h 30 e/h

AdaBoost.M2

Se (%) 87.32 88.67 84.81 96.11 95.34 92.07 90.00 85.47 85.81
Sp (%) 70.23 79.44 94.24 48.80 63.07 89.28 100.00 92.05 97.13
PPV (%) 95.18 75.12 67.76 89.90 68.20 66.23 100.00 96.62 96.21
NPV (%) 45.15 90.93 97.75 72.58 94.21 98.01 42.31 70.43 88.95
LR+ 2.93 4.31 14.72 1.88 2.58 8.59 Inf 10.74 29.86
LR- 0.18 0.14 0.16 0.08 0.07 0.09 0.10 0.16 0.15
Acc (%) 85.12 83.25 93.06 87.87 77.71 89.80 90.68 87.27 91.93
Acc4 (%) 63.40 58.86 73.60
Cohen’s κ 0.489 0.443 0.622

SVMr

Se (%) 96.01 91.97 84.60 99.18 97.92 90.45 100.00 96.15 89.86
Sp (%) 46.54 74.10 95.17 21.26 57.47 89.51 50.00 67.04 91.38
PPV (%) 92.36 71.31 71.43 85.66 65.66 66.32 96.46 88.58 89.86
NPV (%) 63.43 92.95 97.74 84.48 97.08 97.62 100.00 86.76 91.38
LR+ 1.80 3.55 17.51 1.26 2.30 8.62 2.00 2.92 10.42
LR- 0.09 0.11 0.16 0.04 0.04 0.11 0.00 0.06 0.11
Acc (%) 89.62 81.46 93.85 85.60 75.82 89.69 96.58 88.20 90.68
Acc4 (%) 65.65 53.42 76.09
Cohen’s κ 0.501 0.364 0.639

RT

Se (%) 87.02 83.61 84.38 95.88 93.76 91.06 90.00 84.62 85.14
Sp (%) 70.65 84.00 95.26 49.46 69.78 90.62 100.00 94.32 97.13
PPV (%) 95.23 78.54 71.77 90.00 72.04 68.92 100.00 97.54 96.18
NPV (%) 44.70 87.98 97.71 71.70 93.08 97.80 42.31 69.75 88.48
LR+ 2.96 5.23 17.80 1.90 3.10 9.71 Inf 14.89 29.63
LR- 0.18 0.20 0.16 0.08 0.09 0.10 0.10 0.16 0.15
Acc (%) 84.90 83.84 93.90 87.80 80.66 90.71 90.68 87.27 91.61
Acc4 (%) 64.46 61.80 73.29
Cohen’s κ 0.498 0.479 0.618

Acc: accuracy, Acc4: four-class accuracy, LR+/LR-: positive and negative likelihood ratio, PPV/NPV: positive and negative predictive
value, Se/Sp: sensitivity and specificity. Bold values correspond to figures higher than our proposal.
4.2. A longitudinal perspective

A comparison of the results in SHHS1t and SHHS2 revealed
hat the latter shows a higher degree of OSA severity overes-
imation. As shown in Fig. 7, this behavior remains when the
,647 exact same subjects from SHHS1t (SHHS1t−fu) are compared
ith their follow-up test five years later (SHHS2). As age was the
nly characteristic in Table 1 that showed statistically significant
ifferences between SHHS1 and SHHS2, we further analyzed
t

8

our results to assess whether it is somehow influencing our
predictions. For each SHHS1t−fu and SHHS2, the non-parametric
Mann–Whitney U test was used to assess potential differences
between the ages of subjects rightly or wrongly predicted within
the same actual OSA group. Among the 12 comparisons for each
of the datasets, age was only found significantly different (p-value
< 0.01) in 2 for SHHS2 (no OSA vs. mild OSA and vs. moderate
OSA within the actual class no OSA) and 2 more for SHHS1t-fu
(no OSA vs. mild OSA within no OSA; and mild-OSA vs. no OSA
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Fig. 7. Confusion matrices achieved in (A) the subjects from SHHS1t with a follow up PSG and (B) the same subjects 5 years later (SHHS2).
ithin mild OSA). Therefore, we conclude that age is not directly
nfluencing the estimation of our model.

Night-to-night variability could underlie some of the different
esults found in SHHS1t−fu and SHHS2 [62]. However, since there
s a clear tendency only towards overestimation, we hypothesize
hat the main reason may be that other morbidities developed
uring the 5-year span are influencing SpO2 signals, thus increas-
ng the estimated severity prediction in some subjects. This idea
ould be supported by the previously described rise in cardio-
ascular and respiratory diseases between SHHS1 and SHHS2, yet
ithout significantly increasing AHI [63]. Although the diagnostic
bility reached in the SHHS2 database is high, particularly for se-
ere OSA, the future assessment of our model using cohorts with
o-morbidities affecting oxygen saturation would potentially im-
rove the accuracy of the application of our model. It would also
rovide more qualitative information to help clinicians in their
herapeutic decisions.

.3. Diagnostic ability and comparison with the state-of-the-art
tudies

Our OSA-specific LSBoost model reached high diagnostic abil-
ty in both non-referral and referral datasets. It additionally out-
erformed other regression and classification machine-learning
ethods evaluated on the same datasets. Previous studies also

ocused on the analysis of at-home SpO2 to automate OSA detec-
ion (Table 5). Some of these models also reached high diagnostic
bility, yet only assessed either one of the two cohort types.
Five studies have focused on non-referral cohorts. All but one

sed the SHHS dataset, at least partially. In contrast, Chung et al.
irectly evaluated different thresholds of 4% ODI to determine
SA severity in a sample of 475 surgical patients [64]. Accuracies
ere high at the cost of unbalanced Se/Sp pairs, which differed

or more than 20 percentage points in all cases. Schlotthauer
t al. and Rolón et al. (2018 and 2020) used a subset of the
HHS2 database to respectively evaluate estimations of ODI3 and
HI in the 15 e/h severity threshold [19–21]. Schlotthauer et al.
sed empirical mode decomposition as the main analytical tool,
hereas Rolón et al. applied discrepancy measures (2018) and
tructured dictionary learning (2020). The three studies reported
igh Acc with balanced Se/Sp. Finally, Deviaene et al. used the
hole SHHS dataset to develop a random forest model focused
n detecting 3% desaturations caused by apneic events [14]. They
ubsequently estimated AHI by counting these events and applied
robust regression methodology to correct biases. Their results
eached lower κ than our LSBoost model in SHHS1, mainly due

9

to our high Acc and more balanced Se/Sp in 15 e/h and 30 e/h.
In contrast, they reported higher κ in SHHS2, where our model
suffers from the aforementioned overestimation. However, their
methodology to select the training set led them to include 223
subjects from SHHS1 that have a corresponding recording in
SHHS2 [14]. No bias was found towards correct predictions in
these subjects for the 15 e/h threshold, but this was not evaluated
for 5 e/h and 30 e/h [14].

Five additional studies have focused on clinical referral
databases. Olson et al. Rofail et al. and Gumb et al. used uni-
variate approaches evaluating delta index, ODI3, and ODI4, re-
spectively [22,62,65]. Rofail et al. reached high Acc and balanced
Se/Sp for 30 e/h, but the remaining figures were moderate in the
three studies. Gutiérrez-Tobal et al. used AdaBoost.M2 to directly
classify subjects into four OSA severity degrees without AHI
estimation prior to the class assignment [12]. Their results were
noticeably less performant than in the current study probably
due to the need for splitting their smaller sample into training
and testing, a less deep characterization of SpO2, and the use
of a reference in-hospital AHI obtained in a different night than
SpO2 [12]. This latter drawback was corrected by Álvarez et al.
resulting in a high four class κ after estimating AHI with support
vector machines [61]. However, the performance in 5 e/h and 15
e/h suffered from unbalanced Se/Sp.

In summary, the single LSBoost model proposed performed
similarly to all other methods that exhibited the highest diagnos-
tic ability among non-referral cohorts, while clearly outperform-
ing all the proposed approaches focused on referral databases.
Additionally, our model also outperformed the two studies that
used the SHHS dataset with other signals [66,67], thus suggesting
the superiority of SpO2 when following a single-channel approach
to simplify OSA diagnosis. Uddin et al. however, followed a two-
channel approach by the jointly use of airflow and SpO2 [68].
They involved 988 subjects from the SHHS1 dataset to develop
and test a new ad-hoc detection algorithm. Their method, when
evaluated in the 15 e/h AHI threshold, reached clearly higher per-
formance than the results of our model in our SHHS1 test group.
Moreover, very similar figures were reached when comparing the
results from 5 e/h and 30 e/h AHI thresholds, with their proposal
increasing the complexity of the test due to the extra airflow
channel.

4.4. Clinical usefulness of the proposal

Our OSA-specific model offers high diagnostic capability re-

gardless of whether the strategy used focuses on primary care
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Table 5
State-of-the-art studies focused on analyzing SpO2 recordings acquired at home or using SHHS database with other signals.
Study # Subjects Purpose and main predictor AHI (e/h) Se (%) Sp (%) Acc (%) Four class κ

Non-referral
Chung
et al.
(2012)
[64]

475
ODI4 direct
assessment
(univariate)

5 96.3 67.3 87.0
nd+15 70.0 92.5 84.0

30 76.0 97.2 93.7

Schlotthauer et al. (2014)
[19]

996
(SHHS2)

ODI3 estimation and evaluation using
Empirical Mode Decomposition (univariate)

15 83.8 85.5 nd nd

Rolón et al. (2018) [20] 954
(SHHS2)

AHI estimation using Discrepancy Measures
and Extreme Learning Machine

15 81.9 87.3 84.6 nd

Deviaene et al.
(2019) [18]

5793
(SHHS1) AHI estimation using

Random Forest to detect
apneic events and Robust
Regression to correct bias

5 83.5 88.0 84.3
0.54715 75.6 95.8 87.0

30 77.3 97.7 94.3

2651
(SHHS2)

5 94.4 67.5 89.7
0.61215 88.8 87.7 88.2

30 87.8 94.4 93.2

Rolón et al. (2020) [21] 954
(SHHS2)

AHI estimation after using structured
dictionary learning and Multi-layer perceptron
to detect apneic events

15 89.1 86.7 87.9 nd

This study

5793
(SHHS1)

AHI estimation using LSBoost

5 93.8 56.3 89.2
0.56115 87.0 84.1 85.3

30 82.2 96.3 94.6

2647
(SHHS2)

5 98.7 32.8 87.2
0.47815 95.2 69.5 81.1

30 89.8 92.0 91.6

Referral

Olson et al.
(1999) [62] 793

Classification of sleep
apnea using Delta index
(univariate)

5 82.7 54.2 nd
nd15 88.5 39.6 67.1∗

30 92.6 34.1 nd

Rofail et al.
(2010) [65] 72 ODI3 direct assessment

(univariate)
5 63.0 83.0 69.5∗

nd30 90.0 88.0 88.9∗

Gumb et al. (2018) [22] 178 ODI4 direct assessment (univariate) 5 88.0 74.5 nd nd

Gutiérrez-
Tobal et al.
(2019) [17]

320
OSA severity
classification using
AdaBoost.M2

5 96.6 50.0 92.9
0.47915 92.5 73.5 87.4

30 88.9 65.5 78.7

Álvarez et al.
(2020) [61] 239 AHI estimation using Support

Vector Machines

5 97.8 16.7 92.7
0.61015 97.3 54.6 87.5

30 89.4 95.9 92.7

This study 322
(RHUH) AHI estimation using LSBoost

5 99.0 63.6 96.6
0.66315 85.5 93.2 87.6

30 86.5 96.6 91.9

SHHS evaluation using other signals (non-referral)
Van Steenkiste et al.
(2019) [66]
Abd. Respiration

2100
(SHHS1)

AHI estimation after using
Long-short Term Memory
networks to detect apneic events

5 99.3 5.9 97.8
0.32915 91.0 37.6 78.8

30 67.2 81.5 76.0

Olsen et al. (2020)
[67]
ECG

9704
(SHHS and others)

AHI estimation after using Gated Recurrent
Units networks to detect apneic events

5 99.1 32.0 95.7 nd30 69.1 95.5 89.2

Uddin et al. (2021)
[68]
Airflow and SpO2

988(SHHS1)
AHI estimation after using a new
ad-hoc automatic algorithm to detect
apneic events

5 98.9 60.0 90.7
nd15 94.7 88.5 91.0

30 87.8 98.2 96.7
+nd: not enough data to estimate; ∗estimated from reported data.
services (low pre-test probability) or specialized sleep facilities
(high pre-test probability). In a context in which approximately
80% of moderate and severe patients remain undiagnosed [69], a
reasonable purpose in a primary care setting is to conduct a pro-
tocol to screen as many hidden OSA positive subjects as possible.
The high Se (>93%) and PPV (>87%) reached by our model in
5 e/h for both SHHS1t and SHHS2 groups suggest the suitability
of our model for this task. Moreover, the decision curves showed
that, when used to establish the non-referral subjects that should
undergo PSG, our model produces higher net benefit than not
conducting any protocol for almost any probability threshold a
clinician would consider. This is an important result as sending
no one to PSG is the current strategy for non-referral subjects
in most healthcare systems [70]. It also showed that our model
reaches higher net benefit than sending all the subjects to PSG
10
for any probability thresholds above 0.39. However, this result
is more trivial as sending all non-referral subjects to PSG is a
unapproachable strategy due to the limited availability of sleep
facilities and the high prevalence of the disease [11]. Notice that,
when using our model to screen patients in non-referral popu-
lations, the costs associated to the diagnostic tests would not be
reduced but increased by the costs of at-home oximetry. Further
studies should address whether these costs may be compensated
by a potential less utilization of healthcare systems by patients
who would not develop morbidities associated to OSA.

On the other hand, in a specialized sleep unit, a reasonable
purpose for our model would be to use it as a surrogate for
the PSG, as determined by the high OSA probability context. The
appropriateness of our proposal for this goal is first supported
by the high values reached in both Se and Sp in our RHUH
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group, especially for the AHI thresholds 15 e/h and 30 e/h (Se
> 85% and Sp >93%). Moreover, in the decision curve analysis,
o surrogate PSG is equivalent to recommend medical treatment
or the referral subjects that the model considers they are suffer-
ng from the disease. In this way, above a probability threshold
f 0.39, our model achieves higher net benefit than a strategy
ased on ‘treat all’ subjects. As expected, it also reached higher
et benefit than ‘treat no one’ for all thresholds, however this
ould be an impractical approach in this high pretest probability
cenario. Moreover, we introduced in the analysis the relative
ost of the standard PSG and the at-home oximetry test used to
btain the data for our proposal. Importantly, the LSBoost-based
odel showed higher net benefit than PSG in the most realistic
cenarios, that is, when a clinician would be willing to conduct
ew PSGs to confirm that a high pretest probability subject is
inally positive. No other ‘test harms’ were considered as they are
ifficult to measure objectively. However, we hypothesize that
dding aspects such as patient discomfort during the test, need
o move to specialized sleep units, accelerated patient access to
iagnosis and treatment, and in-lab lack of representativeness
f the habitual sleep environment, would increase the relative
et benefit of our proposal comparing to PSG. Contrary, unnec-
ssary treatment for false positive subjects would act in the
pposite sense. In this regard, it is noteworthy to mention that
nly mild or moderate side effects are usually reported in the
ost widespread treatment approaches [71]. Nevertheless, future
d-hoc studies should focus on providing a more comprehensive
iew on all these aspects.

.5. Limitations and future work

We have already discussed the need for future evaluation of
he performance of our model in the presence of co-morbidities,
nd the need for further analysis of the extracted SpO2 informa-

tion to find associations with other common OSA events. Another
limitation is the sample size of the referred database. Although it
is one of the largest among the studies focused on SpO2 record-
ings, it is remarkably smaller than the SHHS dataset. Therefore,
future assessment of larger referral databases would help match
the statistical power of our results on referral and non-referral
cohorts. In addition, our validation strategy led to a smaller
proportion of subjects for training than for testing. It was the
result of trying to avoid biases in the model AHI estimation.
However, using more training instances could derive into even
more accurate models. There is also a need for assessing record-
ings from younger subjects as only 25% of those included in
RHUH dataset are less than 46 years old and none from the
SHHS dataset are less than 40 years of age. However, OSA is
known to increase its prevalence with age, with only around
1.2% of subjects below 44 years old presenting AHI ≥ 5 e/h [72].
Similarly, although the SHHS dataset provides race data, it is
only detailed for white and black subjects. Moreover, only white
subjects were included in the RHUH dataset as a result of the
natural demographics in the area of Valladolid (Spain). Therefore,
a comprehensive assessment of our proposal involving subjects
from other ethnicities is still pending. In this sense, despite sig-
nificant differences in the proportion of black subjects included
in our SHHS1 training set comparing with our SHHS1 test set,
our model rightly classified a similar proportion of black and all
other races subjects (65.5% vs. 70.3%), showing non-significant
p-values (> 0.01 in Fisher’s exact test). The current use of the
AHI thresholds to predict OSA-related adverse outcomes or mor-
tality is also under discussion [73,74]. Although it is accepted
as the main diagnostic option to establish OSA and its different
severity categories [73], it is also as true that there is an active
search for improving the AHI capability to predict the related
11
risks [73,74]. In this regard, one strength of our regression model
is that changes in AHI thresholds could be easily adopted in our
AHI estimations. Future research, however, would be needed to
assess to what extent our estimated AHI is sensitive to OSA-
related negative consequences different from respiratory events.
In addition, a comprehensive cost-effectiveness study would be
also useful to complement our findings. Finally, the investigation
of new automated diagnostic techniques is another future goal.
Deep learning algorithms could be interesting alternatives at the
cost of reduced model interpretability.

5. Conclusions

Our LSBoost-based model exhibits very high performance in
automatic OSA diagnosis when compared with the extant litera-
ture focused on referral or non-referral cohorts. The model also
informed that some of the characteristics of the SpO2 signal can
counteract the tendency of the ODI3 to underestimate OSA sever-
ity. According to our findings, we conclude that our approach
can be used to derive clinically valuable protocols to screen OSA
patients attending primary care services or avoid full PSGs in
specialized sleep facilities, thus demonstrating the usefulness of
the SpO2 signal obtained at home.
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