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 

Abstract—This study aims at assessing the usefulness of deep 

learning to enhance the diagnostic ability of oximetry in the 

context of automated detection of pediatric obstructive sleep apnea 

(OSA). A total of 3196 blood oxygen saturation (SpO2) signals 

from children were used for this purpose. A convolutional neural 

network (CNN) architecture was trained using 20-min SpO2 

segments from the training set (859 subjects) to estimate the 

number of apneic events. CNN hyperparameters were tuned using 

Bayesian optimization in the validation set (1402 subjects). This 

model was applied to three test sets composed of 312, 392, and 231 

subjects from three independent databases, in which the apnea-

hypopnea index (AHI) estimated for each subject (AHICNN) was 

obtained by aggregating the output of the CNN for each 20-min 

SpO2 segment. AHICNN outperformed the 3% oxygen desaturation 

index (ODI3), a clinical approach, as well as the AHI estimated by 

a conventional feature-engineering approach based on multi-layer 

perceptron (AHIMLP). Specifically, AHICNN reached higher four-

class Cohen’s kappa in the three test databases than ODI3 (0.515 

vs 0.417, 0.422 vs 0.372, and 0.423 vs 0.369) and AHIMLP (0.515 vs 

0.377, 0.422 vs 0.381, and 0.423 vs 0.306). In addition, our proposal 

outperformed state-of-the-art studies, particularly for the AHI 

severity cutoffs of 5 e/h and 10 e/h. This suggests that the 

information automatically learned from the SpO2 signal by deep-

learning techniques helps to enhance the diagnostic ability of 

oximetry in the context of pediatric OSA.  

 
Index Terms— Oximetry, deep learning, convolutional neural 

networks (CNN), apnea–hypopnea index (AHI), pediatric 

obstructive sleep apnea (OSA). 
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I. INTRODUCTION 

BSTRUCTIVE sleep apnea (OSA) is a highly prevalent 

condition among the pediatric population (1%-5%) [1]. 

Pediatric OSA is characterized by recurrent respiratory pauses 

(apneas) and airflow reductions (hypopneas), which leads to 

oxygen desaturations and arousals that cause restless sleep [1], 

[2]. Untreated OSA is associated to metabolic and 

cardiovascular malfunctioning, as well as neurobehavioral 

abnormalities that diminish children’s health and quality of life, 

[1], [3].   

The gold standard diagnosis test is polysomnography (PSG) 

[1]. PSG requires children to spend the night in a specialized 

sleep unit while being recorded up to 32 biomedical signals [3], 

[4]. These recordings are used to score apneas and hypopneas 

in order to obtain the apnea-hypopnea index (AHI), which is the 

clinical variable used to diagnose OSA [2]. Despite its 

effectiveness, several limitations of PSG have been pointed out 

[5], [6], including its complexity, cost, high intrusiveness, and 

limited availability. This results in a delay in the diagnosis and 

treatment of OSA of the affected children [7].  

In order to overcome these limitations, the scientific 

community has explored the use of simplified tests that increase 

the accessibility and effectiveness of pediatric OSA diagnosis. 

In this respect, the blood oxygen saturation signal (SpO2) from 
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nocturnal oximetry has been frequently proposed as a clinically 

valuable tool for the screening of OSA in children due to its 

simplicity, reliability and suitability [8], [9]. The SpO2 signal 

measures the oxygen content in the hemoglobin of the blood 

[10], thus containing information of the oxygen desaturations 

associated to apneic events from OSA [2].   

Promising results have been obtained in previous studies 

from the automated analysis of the SpO2 signal following a 

feature-engineering methodology [11]–[18]. First, a set of 

hand-crafted features from oximetry was obtained using 

different signal processing algorithms: conventional oximetric 

indices, statistical parameters, nonlinear methods, and 

frequency domain techniques [11]–[18]. Then, thresholding 

rules [11], [12] and machine-learning algorithms [13]–[18] 

were used with these features to determine the presence and 

severity of pediatric OSA. Nonetheless, these conventional 

feature-engineering approaches require considerable 

knowledge in order to identify, a priori, a set of relevant 

features to extract from the data [19]. In addition, the level of 

abstraction that classical methods provide is low, which limits 

their ability to identify complex patterns in the data [19]. This 

may result in missing relevant information from the SpO2 

signals linked to apneic events. 

These issues can be solved by using deep-learning 

algorithms, which automatically learn complex patterns for 

detection or classification tasks from raw data using 

architectures with multiple levels of representation [19]. These 

algorithms have beaten conventional approaches in many 

fields, such as image recognition, language processing, and 

time series analysis [19]. In the OSA context, recent studies 

have focused on the application of deep-learning techniques to 

detect sleep stages [20], apneic events [21], and/or estimate 

AHI in adult OSA patients [21]. Their findings suggest that 

deep-learning algorithms are appropriate to analyze different 

physiological signals from PSG, such as electrocardiogram, 

electroencephalogram, airflow, or oximetry [20], [21].  

Specifically, the majority of these studies employed deep-

learning architectures based on convolutional neural networks 

(CNN) [21], which are the most widely-used deep-learning 

algorithm [19]. Despite being originally inspired for image 

analysis, CNNs have proven its suitability for time series 

classification in a big variety of domains [22], including 

biomedical signal analysis [23]–[26]. CNN have a multi-layer 

architecture, with shared weights, sparse connections, and 

pooling operations, which allows them to identify both short- 

and long-term patterns occurring in different parts of the time 

series [25], while reducing the computational cost of other 

deep-learning algorithms [19]. This CNN property may be 

useful to identify desaturations in the SpO2 signal associated to 

apneic events that may occur at different times. In addition, 

CNNs provide higher levels of representation that allow to learn 

more complex features [19], which may be useful to detect 

complex patterns in long segments of the SpO2 signal, such as 

clusters of desaturations [27].  

The novelty of this research is the use of a new deep-learning 

model based on CNN that allows to accurately diagnose 

pediatric OSA with a high generalization ability from the raw 

oximetry signal. We hypothesize that deep-learning approaches 

could help to automatically extract the relevant information of 

the oximetry signal in the context of pediatric OSA diagnosis. 

Consequently, the main goal of this study is to evaluate the 

usefulness of deep-learning to estimate the AHI from ovenight 

oximetry in children with suspected OSA. To achieve this goal, 

a CNN architecture is trained to estimate the number of apneic 

events from 20-min SpO2 segments, which is a novel approach 

in the context of pediatric OSA. The output of the CNN for each 

segment is then aggregated to estimate the AHI in pediatric 

OSA patients using a large cohort of 3196 SpO2 recordings 

from three different datasets.  

One related conference paper developed by our own group 

has already been published showing preliminary results [28]. 

Despite the fact that our previous work also applied CNNs to 

analyze SpO2 recordings, there are some essential differences 

with this research. Our main contribution is that our deep-

learning based methodology allows to diagnose pediatric OSA 

using the oximetry signal. In this sense, our previous work 

showed promising results in detecting apneic events (event-

based approach) from the oximetry signal using a CNN [28]. In 

the current study, we have investigated whether those 

indications may be extended to obtain a new deep-learning 

model based on CNN that allows to directly estimate the AHI, 

thus being able to conduct a complete automatic diagnosis 

(subject-based), including the assessment of the pediatric OSA 

severity degrees. Instead of training a CNN to detect individual 

apneic events (binary output), in this research we have trained 

a CNN to regress the number of apneic events in SpO2 segments 

(continuous output), which allows to accurately analyze SpO2 

segments with several apneic events. A two-step aggregation 

procedure (averaging plus linear regression) has been also 

included to accurately estimate the AHI of each subject from 

the outputs of the CNN. We have also incorporated novel 

elements to improve the training and optimization process of 

the deep-learning model (Huber loss, batch shuffling, learning 

rate scheduler, early stopping, and Bayesian optimization). 

Additionally, in the present study, we have designed and 

prospectively assessed a new model using three independent 

datasets, leading to a sample size seven times larger than in our 

preliminary work (3196 vs. 453). This contributes to increase 

the generalization ability of our current proposal. Finally, 

another contribution of our work is that we have performed a 

thorough comparison with two conventional approaches to 

properly assess the validity of our proposal. Particularly, we 

have compared the results of the proposed approach with the 

3% oxygen desaturation index (ODI3), a conventional clinical 

approach commonly used for comparison purposes [11], [13]–

[18], as well as with the AHI estimated by a classical feature-

engineering approach.  

II. SUBJECTS AND SIGNALS UNDER STUDY 

A total of 3196 sleep studies of children ranging from 0 to 

18 years of age composed the population under study. Three 

large datasets were used: (i) the Childhood Adenotonsillectomy 

Trial (CHAT) dataset, a public multicenter database composed 
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of 1638 sleep studies (clinical trial identifier: NCT00560859) 

[29], [30]; (ii) the University of Chicago (UofC) dataset, a 

private database composed of 980 pediatric subjects; and (iii) 

the Burgos University Hospital (BUH) dataset, a private 

database composed of 578 subjects. All subjects from the three 

datasets were referred to overnight PSG due to clinical 

suspicion of OSA. An informed consent was obtained from all 

legal caretakers of the children and the Ethics Committee of the 

different sleep centers involved in the study approved the 

protocols.  

SpO2 recordings were acquired during PSG using sampling 

rates ranging from 1 to 512 Hz. The guidelines of the AASM 

were used to quantify sleep and score apneas and hypopneas by 

pediatric sleep specialists from the different centers [2], [31]. 

The AHI, obtained as the number of apneas and hypopneas per 

hour of sleep, was used to diagnose pediatric OSA [2]. 

Common clinically used AHI cutoffs of 1, 5, and 10 events per 

hour (e/h) were used in this study to classify children into four 

OSA severity degrees: no-OSA (AHI<1 e/h), mild OSA 

(1≤AHI<5 e/h), moderate OSA (5≤AHI<10 e/h), and severe 

OSA (AHI≥10 e/h) [3], [32], [33]. 

Data was divided into three sets: training set, employed to 

train the deep-learning algorithms; validation set, used for 

hyperparameters optimization; and test set, employed to 

evaluate the diagnostic performance of the deep-learning 

methods. Only the CHAT database contains annotations of time 

location of apnea and hypopnea events, which are needed in the 

deep-learning models as the output labels for training. 

Accordingly, the training set was composed of 859 SpO2 

recordings from the baseline (453 subjects) and follow-up 

groups (406 subjects) of the CHAT database [30]. The subjects 

from the remaining group of the CHAT dataset, non-

randomized (779 subjects), as well as the subjects of the UofC 

and BUH sets, were randomly divided into a validation set 

(60%) and a test set (40%), being 60%-40% a common 

proportion used in previous studies for validation and test 

purposes [14], [17]. 

In this way, the validation set was composed of 1402 SpO2 

recordings from the CHAT (467, 60% of the 779 subjects from 

the nonrandomized group), UofC (588, 60% of the 980 

subjects), and BUH (347, 60% of the 578 subjects) databases, 

whereas the test set was composed of 312 subjects from the 

CHAT dataset (40% of the nonrandomized group), 392 subjects 

from the UofC dataset (40%), and 231 subjects from the BUH 

dataset (40%). Table I shows clinical and demographic data 

from the subjects under study.  

III. METHODOLOGY 

A. Proposed CNN model 

The proposed solution, depicted in Fig.1, consists of three 

steps: (1) signals segmentation; (2) CNN architecture; and (3) 

AHI estimation.   

1) Signals segmentation 

First, SpO2 recordings were down-sampled to a sample rate 

of 1 Hz in order to homogenize the frequency. SpO2 signals 

from each subject were then divided into 20-min segments 

(1200 samples), as shown in Fig. 1 (a). This segment size (20-

min) allows to detect clusters of desaturations, which have a 

minimum duration of 10-min [27]. Finally, each 20-min SpO2 

segment in the training set is labelled with the annotations 

provided by sleep technicians [30]. The output label  for each 

segment was obtained as the number of apnea and hypopnea 

events associated to 3% oxygen desaturations occurring in these 

20 minutes, according to the annotation event files of the CHAT 

dataset [30].  

2) CNN architecture  

CNN are the most popular deep-learning technique to 

process multidimensional arrays, such as 1D signals or 2D 

images. In this study, CNN were used to process raw oximetry 

data. Figure 1 (b) shows the architecture of the proposed CNN. 

The input of the CNN architecture is the 20-min SpO2 segment. 

The CNN architecture processes the input by the use of 𝜆𝐶 

stacked convolutional blocks, each one composed of: 

convolutional layer, batch normalization, activation, pooling, 

and dropout [19]. 

 The convolutional layer extracts feature maps from the input 

data 𝑎[𝑛] using convolutional filters (kernels) [19]: 

𝑥𝑖
𝑙[𝑛] =  ∑ 𝑤𝑘

𝑙 ∗  𝑎𝑖[𝑛 − 𝑘 + 1] + 𝑏𝑘
𝑙𝐿𝐶

𝑘=1 ,       (1) 

where 𝑥𝑖
𝑙 is the lth feature map (𝑙 = 1, … , 𝑀𝐶, being 𝑀𝐶 the 

number of filters) in the convolutional block 𝑖  =  1, … , 𝜆𝐶, 𝑤𝑘
𝑙  

and 𝑏𝑘
𝑙  are the weights and biases of each convolutional kernel 

in the convolutional block 𝑖, and 𝐿𝐶 is the kernel size.  

After the convolution, batch normalization is applied to 

normalize the feature maps [19]. Then, a non-linear function is 

used to decide which feature maps are activated, depending on 

a rule or a threshold [19]. In this study, a rectified linear unit 

(ReLU) activation function, which is the standard choice for 

deep-learning [19], was used:   

𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑥),               (2) 

The output of the ReLU is fed into a max-pooling layer, 

which applies a maximum operation with a pool factor K=2, 

which is a widely used value, in order to reduce dimensionality 

as well as computational cost [19]. Finally, dropout operation 

was included in the training phase in order to avoid overfitting 

[19]. Dropout randomly removes some units with a probability 

𝑝𝑑𝑟𝑜𝑝 at each batch of a training epoch [19].  

After 𝜆𝐶 convolutional blocks, a flattening layer is used to 

transform the 2-D feature maps into a 1-D series [19]. Then, a 

linear activation unit is used to obtain the output of the network, 

𝑦𝐶𝑁𝑁
𝑚  which accounts for the apneic events associated to 

desaturations for the corresponding input 20-min SpO2 

segment. 

3) AHI estimation 

Based on the output 𝑦𝐶𝑁𝑁
𝑚  of the CNN for each 20-min SpO2 

segment 𝑚 = 1, 2, 3, … , 𝑁, the AHI of each patient can be 

estimated. First, the average of the output of the CNN obtained 

for each SpO2 segment is computed: 

𝑦𝐶𝑁𝑁
𝑎𝑣𝑔

=  
∑ 𝑦𝐶𝑁𝑁

𝑚  𝑁
𝑚=1

𝑁
,                (3) 

where 𝑁 is the number of 20-min SpO2 segments of the 

oximetry signal. This step is necessary as the number of 20-min 
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SpO2 segments is different for each patient. Then, the AHI is 

obtained using the following expression, as shown in Fig. 1 (c): 

𝐴𝐻𝐼 =  (𝛽 ∙ 𝑦𝐶𝑁𝑁
𝑎𝑣𝑔

) + 𝜀,              (4)  

where 𝛽 and 𝜀 are the intercept and disturbance term of a linear 

regression model, which was fitted using the validation set. This 

linear regression corrects the trend of the CNN to underestimate 

the AHI, which is caused by [34]: (i) the AHI estimated by the 

CNN is obtained using the total recording time, while the AHI 

from PSG uses total sleep time; (ii) there are apneic events that 

are not associated to oxygen desaturations, so they cannot be 

detected by the CNN. 

B. CNN training and optimization process 

The training data were fed into the CNN in batches of 100 

during 500 epochs. He-normal method was used to initialize the 

weights and biases of each layer [35]. Then, the adaptive 

moment estimation (Adam) algorithm was used with an initial 

learning rate of 0.001 to update the weights and biases in each 

training batch [36]. Huber loss [37] was the function used to 

minimize Adam algorithm in the validation set. This loss 

function has a tunable hyperparameter, delta (𝛿), that allows to 

control the importance of outliers [37]: 

𝐿 (𝑦𝑚, 𝑦𝐶𝑁𝑁
𝑚 ) = {

1

2
 (𝑦𝑚 − 𝑦𝐶𝑁𝑁

𝑚 )2, |𝑦𝑚 − 𝑦𝐶𝑁𝑁
𝑚 | ≤ δ

𝑦𝑚 (|𝑦𝑚 − 𝑦𝐶𝑁𝑁
𝑚 | −

1

2
 δ) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4) 

where 𝑦𝑚 is the target variable and 𝑦𝐶𝑁𝑁
𝑚  is the output of the 

CNN for a segment 𝑚. At each training epoch, training data 

were shuffled in order to improve the convergence of the 

optimization algorithm [19], so the batches were different. In 

addition, the learning rate was decreased by a factor of 2 after 

10 epochs of non-improvement in the loss function value of the 

validation set, which helps to obtain a converged stable set of 

final weights [19]. Finally, early stopping [19] was applied to 

stop training after 30 epochs of non-improvement in order to 

reduce the training time, restoring weights to those that 

achieved the best performance in the validation set.  

The hyperparameters of the CNN architecture to optimize 

 
Fig. 1. Overview of the proposed methodology. (a) Signals segmentation, (b) CNN architecture, and (c) AHI estimation.  

 

TABLE I  

DEMOGRAPHIC AND CLINICAL DATA FROM CHILDREN UNDER STUDY 

 All Training set Validation set 
CHAT  

Test set 

UofC  

Test set 

BUH  

Test set 

SpO2 recordings (n) 3196 859 1402 312 392 231 

Age (years) 6 [5-8] 7 [6-8] 6 [4-8] 7 [6-8] 6 [3-9] 5 [4-7] 

Males (n) 1735 (54.6%) 417 (48.5%) 740 (52.8%) 143 (45.8%) 254 (64.8%) 160 (69.3%) 

BMI (kg/m2) 
17.2  

[15.4-21.1] 

17.3  

[15.5-22.3] 

16.9 

[15.2-20.7] 

17.1  

[15.4-19.9] 

18.1  

[15.8-21.7] 

16.0 

[14.7-18.0] 

AHI (e/h) 2.1 [0.7-6.3] 3.1 [1.4-6.9] 1.7 [0.6-5.9] 0.8 [0.4-1.7] 3.3 [1.4-7.8] 2.3 [0.9-6.4] 

AHI<1 (n) 1015 (31.8%) 173 (20.1%) 516 (36.8%) 187 (59.9%) 77 (19.6%) 62 (26.8%) 

1≤AHI<5 (n) 1230 (38.5%) 395 (46.0%) 493 (35.2%) 76 (24.4%) 169 (43.1%) 97 (42.0%) 

5≤AHI<10 (n) 447 (14.0%) 170 (19.8%) 164 (11.7%) 18 (7.8%) 63 (16.1%) 32 (13.9%) 

AHI≥10 (n) 504 (15.8%) 121 (14.1%) 229 (16.3%) 31 (9.9%) 83 (21.2%) 40 (17.3%) 

SpO2: blood oxygen saturation signal; BMI: Body Mass Index; AHI: Apnea-Hypopnea Index, CHAT = Childhood Adenotonsillectomy Trial, UofC = University of 

Chicago, BUH = Burgos University Hospital.  Data are presented as median [interquartile range] or n (%) 
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were the number of filters in each convolutional layer (𝑀𝐶), the 

kernel size of each convolutional layer (𝐿𝐶), the number of 

CNN blocks (𝜆𝐶), the dropout probability (𝑝𝑑𝑟𝑜𝑝), and the delta 

parameter of the Huber loss (𝛿). Bayesian optimization with 

tree-structured Parzen estimator (BO-TPE) [38] implemented 

in Hyperopt library [39] was used to obtain the optimum values 

of these hyperparameters. BO-TPE is considered more efficient 

than grid search or random search for hyperparameters 

optimization, since it uses past evaluation results to form a 

probabilistic model that attempts to optimize the objective 

function in an iterative way [40]. 

Keras framework with Tensorflow backend was used to 

implement the CNN-based architecture [41]. CNNs were 

trained on a NVIDIA GeForce RTX 2080 GPU in a Windows 

10 environment.  

C. Comparison with conventional approaches 

The following conventional methods have been applied in 

order to compare the diagnostic performance of the proposed 

deep-learning model: 

1) Clinical approach: ODI3. ODI3 was estimated as the 

number of desaturations of at least 3% per hour of recording 

[42]. This parameter has shown its usefulness in the clinical 

OSA context, and is usually employed for comparison purposes 

[11], [13]–[18].  

2) Classical feature-engineering approach: multilayer 

perceptron (MLP) neural network trained using features 

extracted from the 20-min SpO2 segments. This approach is 

divided into the following common four steps: (i) signal 

preprocessing, where artifacts were removed from SpO2 

recordings following the methodology employed in previous 

studies [14], [15], [17]; (ii) feature extraction, where up to 23 

features were extracted from each 20-min SpO2 segment, the 

same features as in the previous study by Hornero et al. [14]; 

(iii) segment-based AHI estimation; where a MLP model was 

trained with the set of 23 SpO2 features to estimate the number 

of apneic events associated to desaturations in each segment; 

(iv) subject-based AHI estimation, where the AHI of each 

subject is obtained from the output of the MLP for each 20-min 

SpO2 segment using the procedure described in (3) and (4).   

D. Statistical Analysis  

The agreement between the estimated AHI by the CNN 

architecture (AHICNN) and the actual AHI from PSG (AHIPSG) 

was assessed by means of scatter and error distribution plots, as 

well as the intra-class correlation coefficient (ICC) and root 

mean square error (RMSE). The overall agreement of AHICNN 

to estimate the severity of OSA was assessed by means of the 

confusion matrices, as well as Cohen’s kappa index (kappa) and 

4-class accuracy. ICC, RMSE, kappa, and 4-class accuracy 

were also obtained for ODI3 and the AHI estimated by the MLP 

(AHIMLP). Additionally, the diagnostic ability of AHICNN was 

assessed for each of the AHI cutoffs that define the OSA 

severity degrees (1, 5, and 10 e/h) by means of sensitivity (Se, 

percentage of OSA positive patients rightly classified), 

specificity (Sp, percentage of OSA negative children rightly 

classified), positive predictive value (PPV, proportion of 

positive test results that are true positives), negative predictive 

value (NPV, proportion of negative test results that are true 

negatives), positive likelihood ratio (LR+, Se/(1-Sp)), negative 

likelihood ratio (LR-, (1-Se)/Sp), and accuracy (Acc, 

percentage of subjects correctly classified).  

IV. RESULTS 

A. Training and validation sets 

Training and validation sets were used to optimize the CNN 

architecture. BO-TPE was used to find the optimum values of 

the hyperparameters of the CNN architecture: 𝑀𝐶, 𝐿𝐶, 𝜆𝐶, 

𝑝𝑑𝑟𝑜𝑝, and 𝛿. The search space of the BO-TPE is shown in Table 

II. The training set was used to train the CNN models at each 

iteration of the BO-TPE procedure, whereas kappa was 

obtained in the validation set as the objective function to 

optimize. The training of most of the CNNs was finished by 

early stopping criterion after 80-120 epochs, thus contributing 

to reduce the training time. The results of the BO-TPE 

algorithm are shown in Figure 2. For each hyperparameter, the 

values of kappa in the validation set are given. These values are 

represented in a boxplot. It can be seen that there is not a high 

dependence of kappa on the hyperparameter values. Slightly 

higher overall kappa values are obtained when 𝜆𝐶 = 6 and 𝐿𝐶 =
5, as well as with increasing values of 𝑀𝐶 and decreasing values 

of 𝛿, whereas 𝑝𝑑𝑟𝑜𝑝 had little effect on the value of kappa. 

Finally, 𝑀𝐶 = 64, 𝐿𝐶 = 5, 𝜆𝐶 = 6, 𝑝𝑑𝑟𝑜𝑝 = 0.1, and 𝛿 = 1.5 

were obtained as the optimum values for the hyperparameters, 

since this combination reached the highest kappa, as shown in 

Table II.  

B. Test set 

1) Diagnostic performance of the CNN model. 

Figure 3 shows the scatter plots of AHICNN compared to 

AHIPSG in the CHAT, UofC and BUH test sets, respectively. 

ICC and RMSE are also shown. Points of the scatter plot of 

AHICNN in the CHAT test set are more concentrated near the 

diagonal line, which is reflected in a higher agreement 

(ICC=0.960 and RMSE=2.89) than in the UofC (ICC=0.917 

and RMSE=5.45) and BUH test sets (ICC=0.583 and 

RMSE=10.44). Figure 4 shows the error distribution plots of 

AHICNN in the three test sets. Mean error was low in the three 

test sets. Nonetheless, 95% confidence intervals of AHICNN 

were higher in the UofC (21.69 e/h) and BUH (28.84 e/h) test 

sets than in the CHAT test set (12.80 e/h). In addition, there are 

some outliers in AHICNN that can be observed in the UofC and 

BUH sets, as reported by the maximum error.  

Fig. 5 shows the confusion matrices of AHICNN, evaluated in 

the three test sets. AHICNN rightly assigned 72.8% (227/312), 

TABLE II 

SEARCH SPACE OF BO-TPE FOR THE CNN HYPERPARAMETERS 

Hyperparameter Search space Optimum value 

MC  8, 16, 32, 64 64 

LC 3, 5, 7 5 

λC 4, 5, 6, 7, 8 6 

Pdrop 0:0.025:0.3 0.1 

δ 0.5:0.5:6 1.5 

BO-TPE= Bayesian optimization with tree-structured Parzen estimator; CNN 

= Convolutional neural network; MC = number of filters; LC = kernel size; λC 

= number of convolutional blocks; Pdrop = dropout probability; δ =delta value 

of the Huber loss 
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60.2% (236/392), and 61.0% (141/231) of subjects in the three 

test sets to their actual OSA severity group. Table III shows 

diagnostic ability statistics of AHICNN for the AHI severity 

cutoffs of 1, 5, and 10 e/h, which are derived from the confusion 

matrix. Notice that AHICNN reached a higher kappa in the 

CHAT test set (0.515) than in the UofC (0.422) and BUH test 

 
Fig. 2. Results of the BO-TPE for every hyperparameter in the validation set. 

 
Fig. 3. Scatter plots comparing AHICNN with AHIPSG in the CHAT, UofC, and BUH test databases. 

 

 
Fig. 4. Error distribution of AHICNN in the CHAT, UofC, and BUH test databases. 
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sets (0.423). Higher performance metrics were obtained in the 

CHAT test set for the three AHI cutoffs, especially for the AHI 

cutoffs of 5 and 10 e/h. 

2) Comparison with conventional approaches 

Table IV shows the comparison of AHICNN with ODI3 and 

AHIMLP in the three test sets. It can be seen that AHICNN showed 

a higher diagnostic capability than ODI3 and AHIMLP in the 

CHAT, UofC, and BUH test sets, as derived from the values of 

ICC, RMSE, kappa, and 4-class accuracy.   

Table V summarizes the comparison of the performance of 

our proposal with state-of-the-art studies aimed at simplifying 

the detection of pediatric OSA and its severity using the SpO2 

signal [11]–[18]. Notice that none of the studies that employed 

a validation approach reported a higher accuracy for the AHI 

cutoffs of 5 e/h and 10 e/h than the proposed CNN-based 

architecture in the CHAT, UofC, and BUH datasets.  

V. DISCUSSION 

In the present study, we assessed the potential usefulness of 

a new CNN architecture to enhance the diagnostic ability of the 

oximetry signal in the context of pediatric OSA. A CNN-based 

deep-learning model was built and trained to estimate pediatric 

OSA severity using raw SpO2 data. This model was validated 

in a database of 3196 SpO2 recordings from three different 

datasets. The proposed CNN model showed a high diagnostic 

ability, improving the diagnostic performance of ODI3 and 

AHIMLP. 

A. CNN architecture  

To the best of our knowledge, this is the first study that 

provides a deep-learning model able to automatically detect 

pediatric OSA and its severity from the oximetry signal. Our 

results showed that that the proposed CNN-based architecture 

is able to discern patterns linked with apneic events present in 

the oximetry signal of children with OSA. Recent studies have 

TABLE IV 

DIAGNOSTIC PERFORMANCE OF AHICNN VS. ODI3 AND AHIMLP IN THE CHAT, 

UOFC AND BUH TEST DATABASES 

Test set ICC RMSE 
4-class 

kappa 

4-class 

Accuracy (%) 

CHAT 

AHICNN 0.960 2.89 0.515 72.8 

ODI3 0.871 4.63 0.417 65.1 

AHIMLP 0.832 5.51 0.377 63.3 

UofC 

AHICNN 0.917 5.45 0.422 60.2 

ODI3 0.861 6.21 0.372 56.6 

AHIMLP 0.890 6.02 0.381 56.9 

BUH 

AHICNN 0.583 10.44 0.423 61.0 

ODI3 0.520 10.64 0.369 57.6 

AHIMLP 0.500 11.05 0.306 52.4 

AHICNN = apnea-hypopnea index (AHI) estimated by our convolutional 

neural network architecture, ODI3 = 3% oxygen desaturation index, AHIMLP = 

AHI estimated by the multi-layer perceptron neural network trained with 

features from the blood oxygen saturation (SpO2) signal, ICC = intra-class 

correlation coefficient, RMSE = root mean squared error, kappa = Cohen’s 

kappa index, CHAT = Childhood Adenotonsillectomy Trial, UofC = 

University of Chicago, BUH = Burgos University Hospital. 

 
Fig. 5. Confusion matrices of AHICNN in the CHAT, UoFC, and BUH test databases. 1: No OSA (AHI < 1 e/h); 2: Mild OSA (1 ≤ AHI < 5 e/h); 3: Moderate OSA 

(5 ≤ AHI < 10 e/h); 4: Severe OSA (AHI≥10 e/h). 

 
TABLE III 

DIAGNOSTIC ABILITY OF AHICNN FOR THE AHI CUTOFFS= 1E/H, 5 E/H, AND 10 E/H IN THE CHAT, UOFC AND BUH TEST DATABASES 

Estimated 

AHI 

CHAT test set UofC test set BUH test set 

AHI = 1 

e/h 

 AHI =5 

e/h 

 AHI = 10 

e/h 

AHI = 1 

e/h 

 AHI =5 

e/h 

 AHI = 10 

e/h 

AHI = 1 

e/h 

 AHI =5 

e/h 

 AHI = 10 

e/h 

Se (%) 71.2 83.7 83.9 90.8 76.0 79.5 88.8 61.1 65.0 

Sp (%) 81.8 100 99.3 36.4 88.6 95.8 53.2 93.7 96.9 

PPV (%) 72.4 100 92.9 85.4 79.8 83.5 83.8 81.5 81.3 

NPV (%) 81.0 97.0 98.2 49.1 86.2 94.6 63.5 84.2 93.0 

LR+ 3.92 N.D 117.84 1.43 6.68 18.90 1.90 9.72 20.69 

LR- 0.35 0.16 0.16 0.25 0.27 0.21 0.21 0.42 0.36 

Acc (%) 77.6 97.4 97.8 80.1 83.9 92.3 79.2 83.5 91.3 

kappa 0.515 0.422 0.423 

CNN = Convolutional neural network, AHI = apnea-hypopnea index, Se = sensitivity, Sp = specificity, PPV = positive predictive value, NPV = negative 

predictive value, LR+ = positive likelihood ratio, LR- = negative likelihood ratio, Acc = accuracy, kappa = Cohen’s kappa index, N.D = not defined, CHAT = 

Childhood Adenotonsillectomy Trial, UofC = University of Chicago, BUH = Burgos University Hospital. 
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also shown the usefulness of deep-learning to analyze different 

physiological signals from PSG in adult OSA patients [21]. In 

this regard, the studies developed by Biswal et al. [43], Choi et 

al. [44], Van Steenkiste et al. [45], and Nikkonen et al. [46] 

reached accuracies in the range 57%-91% to classify subjects 

into the four adult OSA severity degrees  (AHI<5, 5≤AHI<15, 

15≤AHI<30, and AHI≥30 e/h). Despite some of these studies 

reported higher accuracies, they focus on adult patients, 

whereas our study applies a CNN to the context of pediatric 

OSA. In this respect, scoring rules for apnea and hypopnea 

events are more restrictive in children than in adults [31]. In 

addition, AHI cutoffs for mild, moderate and severe OSA are 

lower in children (1, 5, and 10 e/h in contrast to 5, 15, and 30 

e/h), which changes the diagnosis and treatment of these 

patients [3], [32], [47]. Due to these remarkable differences, 

automated diagnosis of OSA is more challenging in children 

and thus higher performances are commonly reached in adult 

patients. 

 These aforementioned studies in the context of adult OSA 

applied different deep-learning architectures to raw PSG 

signals: recurrent neural networks (RNN) [43], [45], multi-layer 

perceptron (MLP) [46], and CNN [44]. From these 

architectures, CNN hold advantage over RNN and MLP in 

terms of computational cost, since they do not include recurrent 

and/or fully-connected layers. This facilitates the integration of 

the proposed architecture in wearable and portable devices. In 

order to corroborate the suitability of CNNs for our problem, 

we also applied the RNN architecture proposed by Van 

Steenkiste et al. [45]. This RNN architecture did not obtain a 

better performance than our CNN model (AHICNN 

outperformed the RNN architecture in terms of ICC: 0.960 vs 

921, 0.917 vs 0.812, and 0.583 vs 0.480 in the CHAT, UofC, 

and BUH test sets), while having a higher computational cost. 

This agrees with a recent review of deep learning for time series 

classification (TSC), where CNN-based architectures achieved 

the highest performance for TSC in an experiment where more 

than 8000 deep-learning models were trained and assessed on 

97 different time series datasets [22]. 

 With respect to the hyperparameters of the CNN 

architecture, Fig. 2 shows the low dependence of kappa from 

the validation set on the optimum hyperparameter values, which 

highlights the reliability of the proposed solution to 

automatically learn OSA-related features from the oximetry 

signal. We also assessed the effect of varying the segment size 

and the overlap between segments. Different values of the 

segment size (5 min, 10 min, 30 min, and 60 min), and overlap 

(50%, and 90%) were tested. Regarding segment size, none of 

the tested values achieved higher kappa in the validation set 

than the segment size of our optimum CNN model (20 min), 

which is appropriate to detect clusters of desaturations [27]. 

TABLE V 

SUMMARY OF THE STATE-OF-THE-ART STUDIES IN THE CONTEXT OF PEDIATRIC OSA DETECTION USING SPO2 RECORDINGS. 

Studies 
Number of subjects 

(Total dataset/test set) 

AHI 

(e/h) 
Methods (Feature/ classification) Validation 

Se 

(%) 

Sp 

(%) 

Acc 

(%) 

Tsai et al. [11] 148/148 1 

5 

10 

ODI4/ Thresholding No 77.7 

83.8 

89.1 

88.9 

86.5 

86.0 

79.0 

85.1 

87.1 

Pia-Villa et al. 

[12] 

268/268 1 

5 

Clusters of desaturations and clinical 

history/ Thresholding 

Direct validation* 91.6 

40.6 

40.6 

97.9 

85.8 

69.4 

Álvarez et al. [13] 50/50 1 

3 

5 

Statistical moments, spectral, nonlinear 

features, and classical indices /LR 

Bootstrapping 89.6 

82.9 

82.2 

71.5 

84.4 

83.6 

85.5 

83.4 

82.8 

Hornero et al. [14] 4191/3602 1 

5 

10 

Statistical, spectral, nonlinear features, 

and ODI3 / Regression MLP 

Training-test 84.0 

68.2 

68.7 

53.2 

87.2 

94.1 

75.2 

81.7 

90.2 

Vaquerizo-Villar 

et al. [15] 

298/75 5 

10 

Bispectrum, spectral features, ODI3, 

and anthropometric variables / 

Multiclass MLP 

Feature optimization- 

training-test 

61.8 

60.0 

97.6 

94.5 

81.3 

85.3 

Crespo et al. [16] 176/176 1 

3 

5 

Statistical moments, spectral, nonlinear 

features, and classical indices/ LDA, 

QDA, and LR 

Bootstrapping 93.9 

74.6 

70.0 

37.8 

81.8 

91.4 

84.3 

77.7 

82.7 

Vaquerizo-Villar 

et al. [17] 

981/392 1 

5 

10 

Nonlinear features and ODI3 / 

Regression MLP 

Training-test 97.1 

78.8 

77.1 

23.3 

83.7 

94.8 

82.7 

81.9 

91.1 

Xu et al. [18] 432/432 1 

5 

10 

Statistical, spectral, nonlinear features, 

and ODI3 / Regression MLP 

Training-test 95.3 

77.8 

73.5 

19.1 

80.5 

92.7 

79.6 

79.4 

88.2 

Our proposal: 

CHAT set 

3196/312 1 

5 

10 

CNN architecture Training-validation-

test 

71.2 

83.7 

83.9 

81.8 

100 

99.3 

77.6 

97.4 

97.8 

Our proposal: 

UofC set 

3196/392 1 

5 

10 

CNN architecture Training-validation-

test 

90.8 

76.0 

79.5 

36.4 

88.1 

95.8 

80.1 

83.9 

92.3 

Our proposal: 

BUH set 

3196/231 1 

5 

10 

CNN architecture Training-validation-

test 

88.8 

61.1 

65.0 

53.2 

93.7 

96.9 

79.2 

83.5 

91.3 

* Direct validation of a scoring criteria against AHI from polysomnography. CNN = Convolutional Neural Networks, AHI = apnea-hypopnea index, Se = 

sensitivity, Sp = specificity, Acc = accuracy, ODI3 = 3% oxygen desaturation index, ODI4 = 4% oxygen desaturation index, LR = Logistic Regression, MLP = 

Multi-layer perceptron, LDA = Linear Discriminant analysis, QDA = Quadratic discriminant analysis, CHAT = Childhood Adenotonsillectomy Trial, UofC = 

University of Chicago, BUH = Burgos University Hospital. 
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Changing the overlap between segments did not result in a 

better performance while significantly increased training and 

validation process.  

B. Diagnostic performance 

As aforementioned, the AHI estimated by our proposed 

optimum CNN architecture (AHICNN) outperformed a 

conventional clinical index ODI3 as well as a classical feature-

engineering approach (AHIMLP) in the three test sets. Our 

AHICNN achieved a higher overall agreement with AHIPSG, as 

well as a higher diagnostic capability to predict pediatric OSA 

severity. In contrast to traditional clinical (ODI3) and feature-

engineering (AHIMLP) approaches, AHICNN automatically learns 

features from the SpO2 recordings associated to apneic events 

through a multi-layer architecture that provides a high level of 

abstraction. According to our results, CNNs can detect 

additional information on the OSA-related changes occurring in 

the SpO2 signal that helps to enhance its diagnostic ability. 

Looking at the confusion matrices of Fig. 5, it can be seen 

that 95.2% (BUH), 96.1% (UofC), and 100% (CHAT) of class 

1 (no-OSA) patients have an estimated AHICNN < 5 e/h (class 1 

or class 2). In addition, 94.4% (BUH), 97.8% (UofC), and 

100% (CHAT) of subjects with an AHICNN≥5 e/h actually show 

an AHIPSG ≥1 e/h, whereas 90.6% (BUH), 96.2% (UofC), and 

100% (CHAT) predicted as severe OSA (AHICNN ≥10 e/h) are 

at least moderate OSA patients. Hence, a possible screening 

protocol can be derived to show the clinical usefulness of our 

proposal as follows: i) if AHICNN <1 e/h, discard the presence 

of OSA because most of these patients (96.2% in BUH, 98.2% 

in UofC, and 100% in CHAT) will have an AHIPSG <5 e/h. If 

symptoms persist, these children may be eventually referred to 

PSG, as recommended by Alonso-Álvarez et al [3]; ii) if 

1≤AHICNN<5 e/h, suggest PSG, since doubts arise about the 

actual diagnosis of the patients; iii) if 5≤AHICNN<10 e/h, 

consider treatment, since most probably (86.4% in BUH, 96.7% 

in UofC, and 100% in CHAT) these subjects have at least a mild 

degree of OSA; iv) if AHICNN≥10 e/h, suggest treatment, since 

most of these children (90.6% in BUH, 96.2% in UofC, and 

100% in CHAT) have an AHIPSG ≥5 e/h, and also consider a 

further observation of these patients, since they are prone to 

have residual OSA after PSG [1]. This screening protocol 

would avoid the need for 45.9% (BUH), 50.0% (UofC), and 

73.7% (CHAT) of complete PSGs, thus contributing to a 

reduction in the waiting lists and medical costs associated with 

the diagnosis of OSA, as well as to provide a more suitable 

diagnostic procedure for children.  

 Comparing the results of the proposed approach in the three 

test sets, it is important to highlight the high diagnostic 

performance obtained by AHICNN in CHAT, where there is a 

higher increase in the performance of AHICNN with respect to 

ODI3 and AHIMLP in terms of overall accuracy, kappa, RMSE, 

and ICC. The proposed CNN model also performed well in the 

UofC and BUH datasets. Despite not being as remarkable as in 

the CHAT dataset, AHICNN also outperformed ODI3 and 

AHIMLP in most of the performance metrics. As it can be seen 

in the scatter plots (Fig. 3), error distribution plots (Fig. 4), and 

confusion matrices (Fig. 5), AHICNN performed better in the 

CHAT dataset than in the UofC and BUH datasets. However, 

the results are still remarkable considering that the optimum 

CNN model was trained in the CHAT dataset. In this sense, 

Collop et al. [48] state that there is a high variability in the 

scoring of polysomnographies among different sleep 

technologists, which may affect the external assessment of our 

proposed deep-learning methodology in two independent 

databases. In the current work, we tried to minimize this 

variability by using a validation set composed of subjects from 

the three datasets to optimize the hyperparameters of the CNN 

architecture.  

The varying diagnostic performance could also be due to 

some differences in the clinical characteristics among datasets. 

As observed in the scatter plots (Fig. 3), AHI from PSG has a 

different distribution in each dataset. The mean values of AHI 

are 4.2 e/h, 9.3 e/h, and 5.9 e/h in the CHAT, UofC and BUH 

test sets. In addition, interquartile range are also different: 0.4-

1.7 in the CHAT dataset, 1.5-9.3 in the UofC dataset, and 0.6-

5.3 in the BUH dataset. The age of children is also different in 

each dataset. CHAT is composed of children ranging 5 to 10 

years of age, whereas UofC dataset is composed of children 

from 0 to 13 years of age and children in the BUH dataset range 

from 0 up to 18 years of age. Sampling rate values of SpO2 

recordings also vary among datasets: (i) 1, 2, 10, 12, 16, 200, 

256, and 512 Hz in the CHAT dataset; (ii) 25, 200, and 500 Hz 

in the UofC dataset; (iii) 200 Hz in the BUH dataset. Finally, 

the population groups of CHAT and UofC datasets are children 

from the United States of America (USA), whereas BUH 

dataset is composed of Spanish patients. In this respect, there 

are differences in race and obesity prevalence between these 

countries. Health system is also different: mostly public in 

Spain vs. private in USA. This influences the socioeconomic 

level of the patients, thus having a considerable impact on the 

health condition. Consequently, these differences in sampling 

rate values, age range, AHI distribution, and patient 

characteristics among countries may have resulted in a lower 

diagnostic performance in the UofC and BUH datasets. This 

agrees with previous studies that also reported differences in the 

diagnostic performance among sleep datasets with different 

clinical characteristics [43], [46], [49].  

C. Comparison with state-of-the-art studies 

Table V shows the details of previous studies focused on the 

analysis of the SpO2 signal in the automated detection of 

pediatric OSA and its severity [11]–[18]. The first studies 

focused on the use of conventional oximetric indices [11], [12]. 

Nonetheless, these studies did not employ a hold-out approach 

to further assess their methodological approaches. 

Recent studies focused on the use of automated signal 

processing and machine learning methods to enhance the 

diagnostic ability of the oximetry signal [13]–[18]. These 

studies followed a three-stage feature-engineering 

methodology to detect pediatric OSA and its severity [13]–[18]. 

The diagnostic accuracies reported in these studies ranged 

between 75.2% and 85.5% Acc for an AHI cutoff of 1 e/h, 

79.4%-82.8% Acc using an AHI cutoff of 5 e/h, and 85.3%-

91.1% using an AHI cutoff of 10 e/h. From these studies, only 
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Hornero et al. [14], Xu et al. [18], and Vaquerizo-Villar et al. 

[15] evaluated the diagnostic performance of an AHI estimation 

model for the common AHI cutoffs of 1, 5, and 10 e/h. As 

aforementioned, our optimum CNN model showed a higher 

diagnostic performance in the CHAT, UofC, and BUH datasets 

than state-of-the-art studies for the AHI cutoffs of 5 and 10 e/h. 

In addition, a higher Sp for the AHI cutoff of 1 e/h was obtained 

in the CHAT, UofC, and BUH datasets than the reported by Xu 

et al. [18] and Vaquerizo-Villar et al. [15], which is useful to 

discard the presence of OSA in pediatric patients. Beyond the 

superior performance of our CNN model, it uses raw data, i.e., 

does not require neither prior pre-processing nor human-driven 

assumptions regarding the SpO2 information needed. 

D. Limitations 

In spite of the promising results of our proposal, some 

limitations should be considered. First, the CNN model training 

procedures were conducted using only the CHAT database, 

since the other two datasets do not contain the annotation files 

with the time locations of apneic events. This, together with the 

differences in sampling rate values, age range, AHI distribution, 

and patient characteristics among countries, may have resulted 

in a lower diagnostic performance in the UofC and BUH 

datasets. Nonetheless, our proposed approach showed a higher 

diagnostic ability than a conventional clinical index, ODI3, as 

well as a classical feature-engineering approach, AHIMLP, in all 

the datasets. Another limitation is that different optimization 

runs could result in different values of the hyperparameters, as 

shown in Fig. 2. However, preliminary analysis on our data 

showed that kappa values in the validation set were similar 

among different runs, which highlights the reliability of our 

CNN architecture. Regarding the explanation of the features 

extracted by the CNN, a new limitation arises. In this regard, 

the application of methods for explainable deep-learning 

models would help to further understand the perturbations in 

oximetry dynamics caused by apneic events, as well as the 

influence of the different elements of the CNN architecture. 

Future research may also focus on the use of pretrained deep-

learning architectures especially suited for the time series 

classification field, which might increase the diagnostic 

performance of traditional architectures based on CNN and 

RNN, analogous to the pretrained deep-learning networks 

existing in the image processing field [50]. Another limitation 

is that we used the AHI without including central sleep apnea 

(CSA) events, as originally conducted in the study that designed 

the CHAT database [30]. In this respect, our proposal could also 

be used to estimate other physiological parameters, such as the 

apnea index, obstructive apnea index, central apnea index, 

and/or ODI. Additionally, the use of SpO2 together with other 

physiological signals from PSG may help to improve the 

diagnostic ability of our proposal at the cost of higher 

complexity in the test, since some physiological perturbation of 

apneic events may not be detected by the oximetry signal alone 

[1]. Finally, another future goal would be further validation of 

our proposed methodology in a database of oximetry signals 

recorded at home.  

VI. CONCLUSION 

In summary, we investigated the ability of a novel deep-

learning model based on CNN to automatically detect pediatric 

OSA and its severity from the raw oximetry signal. Our results 

suggest that deep learning is an appropriate tool to 

automatically learn discriminative features from oximetry 

dynamics associated to apneic events. The proposed CNN 

architecture reached a high diagnostic performance, 

outperforming the ODI3, a clinical approach, as well as the 

AHIMLP from a conventional feature-engineering approach. In 

addition, we achieved higher performance than the reported by 

previous studies, particularly for moderate-to-severely affected 

children. The extensive validation of our proposal in three 

independent datasets as well as the design of a screening 

protocol highlight the applicability of our results. Therefore, we 

conclude that deep-learning techniques could be potentially 

used to enhance the diagnostic ability of the oximetry signal in 

the context of pediatric OSA. 
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