
  

  

Abstract. Sleep staging is of paramount importance in 

children with suspicion of pediatric obstructive sleep apnea 

(OSA). Complexity, cost, and intrusiveness of overnight 

polysomnography (PSG), the gold standard, have led to the 

search for alternative tests. In this sense, the 

photoplethysmography signal (PPG) carries useful information 

about the autonomous nervous activity associated to sleep stages 

and can be easily acquired in pediatric sleep apnea home tests 

with a pulse oximeter. In this study, we use the PPG signal along 

with convolutional neural networks (CNN), a deep-learning 

technique, for the automatic identification of the three main 

levels of sleep: wake (W), rapid eye movement (REM), and non-

REM sleep. A database of 366 PPG recordings from pediatric 

OSA patients is involved in the study. A CNN architecture was 

trained using 30-s epochs from the PPG signal for three-stage 

sleep classification. This model showed a promising diagnostic 

performance in an independent test set, with 78.2% accuracy 

and 0.57 Cohen’s kappa for W/NREM/REM classification. 

Furthermore, the percentage of time in wake stage obtained for 

each subject showed no statistically significant differences with 

the manually scored from PSG. These results were superior to 

the only state-of-the-art study focused on the analysis of the PPG 

signal in the automated detection of sleep stages in children 

suffering from OSA. This suggests that CNN can be used along 

with PPG recordings for sleep stages scoring in pediatric home 

sleep apnea tests. 

 
Clinical Relevance—This research establishes the usefulness 

of CNN to automatically score sleep stages in pediatric OSA 

patients using the PPG signal. 

I. INTRODUCTION 

Obstructive sleep apnea (OSA) is a highly prevalent sleep-
related respiratory disorder in children (5%) [1]. OSA is 
characterized by recurrent apneas (breathing cessations) and 
hypopneas (airflow reductions), which derive in oxygen 
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desaturations, arousals, and transitions between wakefulness 
and different sleep stages [1], [2]. As a consequence of sleep 
disturbance, the affected children suffer from behavioral and 
neurocognitive deficits [1], [2]. Hence, it is of the utmost 
importance to provide an early diagnosis of pediatric OSA that 
includes the characterization of the sleep architecture. 

Nowadays, overnight polysomnography (PSG), together 
with the rules of the American Academy of Sleep Medicine 
(AASM), are used for the scoring of sleep stages and 
cardiorespiratory events [3]. PSG involves the recording of 
multiple biomedical signals, including electroencephalogram 
(EEG), electrooculogram (EOG), electromyogram (EMG), 
airflow, electrocardiogram (ECG), and blood oxygen 
saturation (SpO2) from photoplethysmography (PPG) [3]. 
According to a visual inspection of EEG, EOG, and EMG, a 
sleep stage is assigned to each non-overlapping 30-s epoch [3]: 
rapid eye movement (REM) sleep, three levels of non-REM 
(NREM) sleep (N1, N2, and N3), and wake (W). Despite being 
considered as the gold standard for sleep assessment, PSG is 
complex and costly due to the necessary specialized equipment 
and trained staff  [4]. PSG is also highly intrusive for children, 
which may derive in obtaining sleep recordings that are not 
representative of natural sleep, thus resulting in the need to 
repeat the diagnostic test [5].   

To overcome these limitations, recent studies have 
proposed the automated analysis of EEG, ECG, EOG, PPG, 
actigraphy, and/or respiratory effort for sleep stage scoring in 
adult patients [6]. In this respect, the PPG signal is especially 
comfortable for children, as it measures blood volume changes 
in body tissues in a non-invasive way with a pulse oximeter 
probe [7]. The PPG signal can be used to estimate heart rate 
variability (HRV) [8], thus containing information of the 
autonomic nervous system activity associated to sleep stages 
[6]. In children, whose sleep architecture and cardiac activity 
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differ from adults [3], [9], only Dehkordi et al. [10] have 
conducted sleep staging using HRV features derived from 
PPG. However, PPG also contains information related to 
changes in cortical and respiratory activity during sleep stages 
that are not reflected in the HRV [6], [11], [12], which 
demands the application of additional methods.  

In the present study, a convolutional neural network 
(CNN) is proposed to analyze raw PPG data during wake, 
NREM, and REM sleep. As a deep-learning algorithm, CNNs 
have the ability to automatically learn complex features from 
raw data [13]. In contrast to recurrent and fully connected 
networks, however, CNNs have a lower computational cost 
[13], which facilitates its integration in portable sleep 
monitoring devices. We hypothesized that CNNs could help to 
automatically extract the relevant information from the raw 
PPG signal associated to sleep stages in pediatric OSA 
patients. Therefore, our main objective is to evaluate the 
usefulness of a CNN architecture to detect wake, NREM, and 
REM sleep stages from the PPG signal in children suffering 
from pediatric OSA. 

II. MATERIAL AND METHODS 

A. Subjects and signals 

The baseline dataset from the public multicenter 
Childhood Adenotonsillectomy Trial (CHAT) database was 
employed in this study [14], [15]. The entire protocol of the 
CHAT database is available in the supplementary material of 
Marcus et al. [14]. This dataset is composed of PSG studies 
of 453 children ranging from 5 to 10 years of age who were 
randomized for pediatric OSA treatment [15]. 
Cardiorespiratory events and sleep stages were scored in 
compliance with the AASM 2007 rules [3]. Accordingly, the 
apnea-hypopnea index (AHI) is calculated to establish 
pediatric OSA diagnosis. 

Complete PPG signals from PSG-derived pulse oximetry 
were obtained for 366 subjects showing different sampling 
rates: 16, 100, 200, 256, and 512 Hz. In order to homogenize 
these, PPG signals were resampled to a common sampling 
frequency of 64 Hz [11]. Then, PPG signals were divided into 
30-s non-overlapping epochs, being each epoch labelled as 
W, NREM, or REM using the sleep stages annotations scored 
by the technicians [14]. This dataset was split into three sets: 
training set (first 219 subjects, 60%), employed to train the 
CNN; validation set (73 following subjects, 20%), used to 
design the hyperparameters of the CNN architecture; and test 
set (last 74 subjects, 20%), used for performance assessment 
in an independent group. Table I shows clinical and 
polysomnographic data from the subjects under study.  

B. Proposed CNN architecture 

CNNs have shown its usefulness to analyze time series 
data during sleep [6], due to its multi-layer architecture with 
weights sharing, sparse connections, and dimensionality 
reduction elements [13]. Fig 1 shows the main components of 
the CNN architecture employed in this work.  

The input section of the network consists of the PPG signal 
for the 30-s epoch (1920 samples) to be classified, 
concatenated with the PPG signal for the five preceding and 
the four following epochs, thus having a 19200x1 input vector. 

This approach allows for better modeling of the temporal 
context used for sleep stages scoring [16].   

 The input is processed using 12 convolutional blocks, 
each one composed of a 1-D convolutional layer, an activation 
layer, and a dropout layer:  

TABLE I.  DEMOGRAPHIC AND POLYSOMNOGRAPHIC  DATA OF 

THE SUBJECTS UNDER STUDY 

 All 
Training 

set 

Validation 

set 
Test set 

Subjects (n) 366 219 73 74 
Age (years) 6 [5, 8] 6 [5, 8] 6 [5, 8] 6 [5, 7] 

Males (n) 178 (48.6%) 108 (49.3%) 31 (42.5%) 39  (52.7%) 

BMI 

(kg/m2) 

17.2 
 [15.2, 21.7] 

17.3 
 [15.5, 21.4] 

19.2 
 [15.2, 22.9] 

16.0 
[15.0, 19.9] 

AHI (e/h) 
4.8  

[2.7, 8.7] 

4.8  

[2.7, 8.7] 

4.7  

[2.5, 8.6] 

4.9  

[3.2, 8.7] 

Wake (n) 
113315 

(25.3%) 

67963 

(25.2%) 

23132 

(26.2%) 

2220 

(24.9%) 

NREM (n) 
271556 
(60.7%) 

164164 
(60.8%) 

53183 
(60.3%) 

54209 
(60.9%) 

REM (n) 
62434 

(14.0%) 

37829 

(14.0%) 

11943 

(13.5%) 

12662 

(14.2%) 

TRT (min) 
591 

[552, 660] 

595 

[553, 662] 

588 

[540, 646] 

592 

[552, 648] 

TST (min) 
464 

[428, 494] 

471 

[438, 496] 

451 

[425, 482] 

458 

[421, 500] 

Data are presented as median [interquartile range], n or %. BMI: Body 

Mass Index; AHI: Apnea-Hypopnea Index; e/h: events per hour; REM: 
Rapid Eye Movement; NREM: Non-REM; TRT: Total Recording Time; 
TST: Total Sleep Time  

 

 

 
Figure 1.  Overview of the proposed CNN architecture. Each 
convolutional block (conv block) includes a 1-D convolution (1-D conv),  

a LRELU activation function, and dropout. 

 

 

 

 

 

 

 

 

 

 

 



  

• 1-D convolutional layer (1-D conv). In this layer, feature 
maps are extracted from the data by using convolutional 
filters, named kernels [13]. In this study, the convolutional 
layer of the first four convolutional blocks had 16 filters 
with a kernel size of 7 (7x1), the following four blocks 
used layers with 32 filters of size 5x1, and the last four 
blocks used 64 filters of size 3x1. Increasing the number 
of filters and decreasing the kernel size with network 
depth is a common approach in CNNs. All the layers also 
included a stride of 2 to reduce dimensionality. 

• Activation layer. In this layer, a leaky rectified linear unit 
(LReLU) activation function with a negative slope of 0.1 
is applied to introduce nonlinearity to the extracted feature 
maps, which allows approximations to any universal 
function [13]. 

• Dropout layer. As the last layer of each convolutional 
block, node connections were randomly removed with a 
probability p=0.1, which is known as dropout, in order to 
minimize overfitting during the training phase [13]. 

After the last convolutional block, a flattening layer is firstly 
used to transform the 2-D feature maps into 1-D data. Then, a 
softmax activation function is applied to obtain the output of 
the network, i.e., the probability of belonging to each class 
(W/NREM/REM) for the input 30-s PPG epoch. 

The implementation of the CNN architecture was 
programmed in Python using the Keras library with 
TensorFlow backend. Network weights were initialized using 
He-normal method, Adam algorithm was used with an initial 
learning rate of 0.0001 to update network weights at each 
iteration, and categorical cross entropy was employed as the 
loss function  [13]. Using 50 reading queues [16], training data 
were fed in random order from different patients to the 
network using a batch size of 100, which allows for improving 
the convergence of the Adam algorithm [13]. 

C. Statistical analysis 

The overall agreement between the sleep stages predicted 
by the CNN architecture and those manually scored by the 
technicians was evaluated by means of confusion matrices, 
which were used to compute the Cohen’s kappa index (kappa) 
and the 3-class accuracy (Acc). The performance for each 
individual class was measured by means of precision (positive 
predictive value, proportion of epochs assigned to the class 
that are true positives), recall (sensitivity, percentage of epochs 
belonging to the class rightly classified), and F1-score 
(harmonic mean of the precision and recall). In addition, the 
percentage of time in each sleep stage was obtained for each 
subject and compared with those from the standard PSG using 
intra-class correlation coefficient (ICC) and Wilcoxon signed-
rank test, considering p-value<0.001 as significant. 

III.  RESULTS 

A.  CNN model performance 

Figure 2 shows the confusion matrix of the CNN model in 
the test set for the three-stage classification (W/NREM/REM). 
This model rightly classified 78.2% of the 30-s PPG epochs in 
the test set, with a kappa value of 0.57. For each individual 
sleep stage, the precision/recall/F1-score were 0.81/0.69/0.74 
for wake, 0.79/0.91/0.85 for NREM sleep, and 0.64/0.41/0.50 

for REM sleep, which were derived from the confusion matrix. 
Notice that higher performance metrics were obtained for 
NREM stages than for wake and REM stages.     

B. Estimation of polysomnographic parameters 

Table II shows the comparison of the percentage of time in 
W/NREM/REM stages with those obtained during PSG. 
Notice that Wake (%) estimated by our CNN-based approach 
reached high agreement with Wake (%) manually obtained 
during PSG, as derived from the median [interquartile range] 
error (-3.4 [8.8] %), ICC (0.59), and p-value (0.002).  

IV. DISCUSSION 

In this preliminary study, we propose a CNN architecture 
to automatically detect wake, NREM, and REM sleep stages 
from PPG in pediatric OSA patients. To our knowledge, the 
application of deep-learning techniques is novel to detect sleep 
stages in pediatric patients. 

Our proposal reached a high performance, with 78.2% Acc 
and 0.57 kappa for W/NREM/REM classification. 
Specifically, the obtained kappa value (in the range 0.41-0.60) 
indicates that there is a moderate agreement between our 
automatic CNN-based PPG scoring and manual scoring from 
PSG [17]. According to this agreement, our approach could be 
used to analyze NREM and REM characteristics in at-home 
simplified tests for pediatric OSA diagnosis [4], such as 

TABLE II.  ESTIMATION OF THE  PERCENTAGE OF TIME IN W, 
NREM, AND REM STAGES 

 CNN Error (CNN-PSG) ICC p-value 

Wake (%) 
19.3  

[12.5, 27.2] 

-3.4  

[-8.1,0.7] 
0.59 0.002 

NREM (%) 
72.3  

[61.8-79.3] 

9.8 

[2.1-15.3] 
0.31 <0.001 

REM (%) 
8.4 

[5.3, 12.6] 
-5.8  

[-8.9,.2.5] 
0.24 <0.001 

Data are presented as median [interquartile range] or n. CNN: 
Convolutional Neural Network; PSG: Polysomnography; ICC: Intra-class 
Correlation Coefficient; REM: Rapid Eye Movement; NREM: Non-REM.  

 

 

 

Figure 2.  Confusion matrix of  the CNN architecture in the test set. This 

matrix compares the sleep stages from standard PSG with the 

corresponding assignation using the CNN model. 

 

 



  

polygraphy and oximetry [18], [19], which do not include 
EEG. As aforementioned, the values of precision/recall/F1-
score were higher in the NREM class than in the W and REM 
classes. The lower performance metrics in W and REM classes 
may be explained by the slight trend of the CNN to assign W 
and REM epochs to the NREM class, as also observed in the 
CNN-PSG differences in terms of percentage of time in each 
sleep stage shown in Table II. The Wake (%) estimated by our 
proposal also showed a high agreement with PSG, as there 
were no statistically significant differences with the manually 
scored Wake (%) from PSG. Accordingly, our CNN-based 
approach could be used to determine the total sleep time (TST) 
in polygraphy and oximetry tests [18], [19], as it can be derived 
from the Wake (%). 

Previous studies shown the usefulness of deep-learning 
approaches to automatically score sleep stages from raw 
physiological signals in adult patients, outperforming feature-
engineering approaches [6]. From these studies, it is of note 
the work done by Korkalainen et al. [11], who implemented a 
CNN combined with a recurrent neural network (RNN) for 
PPG-based sleep stage classification in the adult context, 
reaching 80.1% Acc and 0.65 kappa for W/NREM/REM 
classification. The TST estimated by Korkalainen et al. [11] 
also reached a high agreement with PSG (p-value of 0.03). In 
contrast to these studies, our study applied CNN to detect the 
three main levels of sleep (W/NREM/REM) in children. In this 
respect, sleep staging is more challenging in children, as sleep 
architecture and cardiorespiratory activity change during the 
childhood [3], [9].  In addition, our CNN model is easier to 
integrate in a low-cost portable oximeter than RNN-based 
architectures since it has a lower computational load.  

In pediatric patients, Dehkordi et al. [10] trained two 
support vector machine-based classifiers with common HRV 
time and spectral features extracted from the PPG signal to 
differentiate between wake and sleep segments (W/Sleep) and 
between NREM and REM segments (NREM/REM), reaching 
77% Acc (W/Sleep) and 80% Acc (NREM/REM). In contrast, 
our current study showed a higher diagnostic performance 
with a CNN trained with raw PPG data: 78% Acc for 3-class 
(W/NREM/REM) classification, 88% Acc to differentiate 
wake from NREM and REM sleep epochs (W/Sleep), 80% 
Acc to differentiate NREM from wake and REM, and 88% to 
differentiate REM from wake and NREM.   

This study presents some limitations. First, the dataset 
employed in this study does not include no-OSA children 
(AHI<1 e/h). The inclusion of these subjects would be useful 
to compare the performance of the CNN model in non-
pathological sleep. Further evaluation would be also required 
to assess the effect of demographic factors, such as age, sex, 
and BMI. Additionally, the use of RNN and attention 
mechanisms may help improve the automatic sleep staging at 
the cost of higher computational complexity.  Finally, it would 
be useful to validate this proposal using PPG signals acquired 
at patient’s home. 

In summary, a CNN-based deep-learning architecture has 
shown usefulness to automatically identify wake, NREM, and 
REM sleep stages from raw PPG data in pediatric OSA 
patients. In addition, the Wake (%) estimated by our CNN-
based approach also showed high agreement with PSG. 
Therefore, we can conclude that CNN-based PPG approaches 

could be potentially used to automatically score sleep stages in 
pediatric sleep apnea testing.  
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